[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028347.html
   My bibliography  Save this article

A seasonal experimental study on a novel CdTe based multi-layer PV ventilated window system integrated with PCM under different operating modes

Author

Listed:
  • Ke, Wei
  • Ji, Jie
  • Zhang, Chengyan
  • Wang, Chuyao
  • Xie, Hao
  • Tian, Xinyi
Abstract
To expand the functions of building window and enhance its thermal performance, a novel CdTe multi-layer PV ventilated window system integrated with phase change material (PCM) was proposed. The novel window system was fabricated, constructed and installed on the south façade of a building room and several groups of seasonal experiments were conducted under different operating modes. Electrical, thermal and daylighting performance of the system were investigated. Main conclusions are: (1) For the heating season mode experiment, daily total electricity generation (EPV) and average electrical efficiency (ηe) were 0.383 kWh and 7.39 %. Room air temperature difference (ΔTroom) between the experimental room and reference room was in the range of 0.88 °C–7.04 °C. Effective functions of space heating and heat preservations were achieved; (2) For the cooling season mode, daily EPV and average ηe were 0.159 kWh and 6.33 %. ΔTroom was in the range of −4.26 °C to −1.26 °C. Effective functions of passive ventilation cooling was realized; (3) The novel window system can provide useful daylight illuminance (UDI) for most time during the working time; (4) Based on the experiment results on transition season, other alternative operating strategies were recommended for specific different ambient condition days.

Suggested Citation

  • Ke, Wei & Ji, Jie & Zhang, Chengyan & Wang, Chuyao & Xie, Hao & Tian, Xinyi, 2023. "A seasonal experimental study on a novel CdTe based multi-layer PV ventilated window system integrated with PCM under different operating modes," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028347
    DOI: 10.1016/j.energy.2023.129440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenjie Zhang & Jiajun Zhang & Fengcheng Huang & Yuqiang Zhao & Yongheng Zhong, 2021. "Study of the Application Characteristics of Photovoltaic-Thermoelectric Radiant Windows," Energies, MDPI, vol. 14(20), pages 1-15, October.
    2. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    3. Liu, Dingming & Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2020. "Comprehensive evaluation of window-integrated semi-transparent PV for building daylight performance," Renewable Energy, Elsevier, vol. 145(C), pages 1399-1411.
    4. Huang, Junchao & Chen, Xi & Peng, Jinqing & Yang, Hongxing, 2021. "Modelling analyses of the thermal property and heat transfer performance of a novel compositive PV vacuum glazing," Renewable Energy, Elsevier, vol. 163(C), pages 1238-1252.
    5. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    6. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    7. Wang, Chuyao & Ji, Jie & Yu, Bendong & Xu, Lijie & Wang, Qiliang & Tian, Xinyi, 2022. "Investigation on the operation strategy of a hybrid BIPV/T façade in plateau areas: An adaptive regulation method based on artificial neural network," Energy, Elsevier, vol. 239(PA).
    8. Zhang, Chengyan & Ji, Jie & Wang, Chuyao & Ke, Wei & Xie, Hao & Yu, Bendong, 2022. "Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing," Energy, Elsevier, vol. 244(PB).
    9. Chen, Mo & Zhang, Wei & Xie, Lingzhi & Ni, Zhichun & Wei, Qingzhu & Wang, Wei & Tian, Hao, 2019. "Experimental and numerical evaluation of the crystalline silicon PV window under the climatic conditions in southwest China," Energy, Elsevier, vol. 183(C), pages 584-598.
    10. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.
    11. Roberts, Frank & Yang, Siliang & Du, Hu & Yang, Rebecca, 2023. "Effect of semi-transparent a-Si PV glazing within double-skin façades on visual and energy performances under the UK climate condition," Renewable Energy, Elsevier, vol. 207(C), pages 601-610.
    12. Orosa, José A. & Oliveira, Armando C., 2011. "A new thermal comfort approach comparing adaptive and PMV models," Renewable Energy, Elsevier, vol. 36(3), pages 951-956.
    13. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    14. Liao, Wei & Xu, Shen, 2015. "Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China," Energy, Elsevier, vol. 83(C), pages 267-275.
    15. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    16. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Wei & Ji, Jie & Zhang, Chengyan & Song, Zhiying & Wang, Chuyao & Xie, Hao & Tian, Xinyi, 2024. "Performance analysis of a novel hybrid CdTe-PCM multi-layer ventilated window system for building application: An experimental and numerical study," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chuyao & Ji, Jie & Yu, Bendong & Zhang, Chengyan & Ke, Wei & Wang, Jun, 2022. "Comprehensive investigation on the luminous and energy-saving performance of the double-skin ventilated window integrated with CdTe cells," Energy, Elsevier, vol. 238(PB).
    2. Ke, Wei & Ji, Jie & Wang, Chuyao & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Lin, Yuan, 2022. "Comparative analysis on the electrical and thermal performance of two CdTe multi-layer ventilated windows with and without a middle PCM layer: A preliminary numerical study," Renewable Energy, Elsevier, vol. 189(C), pages 1306-1323.
    3. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    4. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Yu, Bendong & Li, Niansi & Ji, Jie & Wang, Chuyao, 2021. "Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter," Renewable Energy, Elsevier, vol. 167(C), pages 313-332.
    6. Guo, Wenwen & Kong, Li & Chow, Tintai & Li, Chunying & Zhu, Qunzhi & Qiu, Zhongzhu & Li, Lin & Wang, Yalin & Riffat, Saffa B., 2020. "Energy performance of photovoltaic (PV) windows under typical climates of China in terms of transmittance and orientation," Energy, Elsevier, vol. 213(C).
    7. Uddin, Md Muin & Ji, Jie & Wang, Chuyao & Zhang, Chengyan, 2023. "Building energy conservation potentials of semi-transparent CdTe integrated photovoltaic window systems in Bangladesh context," Renewable Energy, Elsevier, vol. 207(C), pages 512-530.
    8. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao, 2023. "Modelling analysis and performance evaluation of a novel hybrid CdTe-PCM PV glass module for building envelope application," Energy, Elsevier, vol. 284(C).
    9. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    10. Xu, Lijie & Ji, Jie & Yuan, Chengqing & Cai, Jingyong & Dai, Leyang, 2023. "Electrical and thermal performance of multidimensional semi-transparent CdTe PV window on offshore passenger ships in moored and sailing condition," Applied Energy, Elsevier, vol. 349(C).
    11. Liu, Xingjiang & Yang, Haotian & Wang, Chaojie & Shen, Chao & Bo, Rui & Hinkle, Laura & Wang, Julian, 2024. "Semi-experimental investigation on the energy performance of photovoltaic double skin façade with different façade materials," Energy, Elsevier, vol. 295(C).
    12. Barone, Giovanni & Buonomano, Annamaria & Chang, Roma & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, Aggelos, 2022. "Modelling and simulation of building integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) systems: Comprehensive energy and economic analysis," Renewable Energy, Elsevier, vol. 193(C), pages 1121-1131.
    13. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.
    14. Yadav, Somil & Hachem-Vermette, Caroline, 2024. "Performance evaluation of semitransparent PV window systems employing periodic thermal model," Applied Energy, Elsevier, vol. 353(PA).
    15. Uddin, Md Muin & Wang, Chuyao & Zhang, Chengyan & Ji, Jie, 2022. "Investigating the energy-saving performance of a CdTe-based semi-transparent photovoltaic combined hybrid vacuum glazing window system," Energy, Elsevier, vol. 253(C).
    16. Xuan, Qingdong & Li, Guiqiang & Jiang, Bin & Zhao, Xudong & Ji, Jie & Pei, Gang, 2021. "Overall outdoor experiments on daylighting performance of a self-regulating photovoltaic/daylighting system in different seasons," Applied Energy, Elsevier, vol. 286(C).
    17. Zhang, Chengyan & Ji, Jie & Wang, Chuyao & Ke, Wei & Xie, Hao & Yu, Bendong, 2022. "Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing," Energy, Elsevier, vol. 244(PB).
    18. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    20. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.