[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222033631.html
   My bibliography  Save this article

Interaction between renewable energy consumption and dematerialization: Insights based on the material footprint and the Environmental Kuznets Curve

Author

Listed:
  • Regueiro-Ferreira, Rosa María
  • Alonso-Fernández, Pablo
Abstract
This paper investigates the effect of renewable energy consumption on material consumption, considering the relationship between Material Footrprint and Gross Domestic Product (GDP), and testing the assumptions of the Environmental Kuznets Curve. A STIRPAT variation is used to specify a model relating the Material Footprint to renewable energy consumption and GDP. The effect is tested for the Material Footprint of fossil fuels and for the Material Footprint of the other categories. The analysis is applied to the seven European countries with the highest proportion of renewable energy consumption.

Suggested Citation

  • Regueiro-Ferreira, Rosa María & Alonso-Fernández, Pablo, 2023. "Interaction between renewable energy consumption and dematerialization: Insights based on the material footprint and the Environmental Kuznets Curve," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033631
    DOI: 10.1016/j.energy.2022.126477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dittrich, Monika & Bringezu, Stefan & Schütz, Helmut, 2012. "The physical dimension of international trade, part 2: Indirect global resource flows between 1962 and 2005," Ecological Economics, Elsevier, vol. 79(C), pages 32-43.
    2. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    3. Rivera-Basques, Luisa & Duarte, Rosa & Sánchez-Chóliz, Julio, 2021. "Unequal ecological exchange in the era of global value chains: The case of Latin America," Ecological Economics, Elsevier, vol. 180(C).
    4. Mary O. Agboola & Festus V. Bekun, 2019. "Does Agricultural Value Added Induce Environmental Degradation? Empirical Evidence from an Agrarian Country," Working Papers of the African Governance and Development Institute. 19/040, African Governance and Development Institute..
    5. Destek, Mehmet & Sinha, Avik, 2020. "Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries," MPRA Paper 104246, University Library of Munich, Germany, revised 2020.
    6. Krane, Jim & Medlock, Kenneth B., 2018. "Geopolitical dimensions of US oil security," Energy Policy, Elsevier, vol. 114(C), pages 558-565.
    7. Dong, Kangyin & Sun, Renjin & Hochman, Gal, 2017. "Do natural gas and renewable energy consumption lead to less CO2 emission? Empirical evidence from a panel of BRICS countries," Energy, Elsevier, vol. 141(C), pages 1466-1478.
    8. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    9. Sarkodie, Samuel Asumadu & Ozturk, Ilhan, 2020. "Investigating the Environmental Kuznets Curve hypothesis in Kenya: A multivariate analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Kemp-Benedict, Eric, 2018. "Dematerialization, Decoupling, and Productivity Change," Ecological Economics, Elsevier, vol. 150(C), pages 204-216.
    11. Yang, Mian & Wang, En-Ze & Hou, Yaru, 2021. "The relationship between manufacturing growth and CO2 emissions: Does renewable energy consumption matter?," Energy, Elsevier, vol. 232(C).
    12. Pothen, Frank & Welsch, Heinz, 2019. "Economic development and material use. Evidence from international panel data," World Development, Elsevier, vol. 115(C), pages 107-119.
    13. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    14. Weisz, Helga & Krausmann, Fridolin & Amann, Christof & Eisenmenger, Nina & Erb, Karl-Heinz & Hubacek, Klaus & Fischer-Kowalski, Marina, 2006. "The physical economy of the European Union: Cross-country comparison and determinants of material consumption," Ecological Economics, Elsevier, vol. 58(4), pages 676-698, July.
    15. Peter L. Daniels & Stephen Moore, 2001. "Approaches for Quantifying the Metabolism of Physical Economies: Part I: Methodological Overview," Journal of Industrial Ecology, Yale University, vol. 5(4), pages 69-93, October.
    16. Liu, Yaping & Sadiq, Farah & Ali, Wajahat & Kumail, Tafazal, 2022. "Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan," Energy, Elsevier, vol. 245(C).
    17. Tunç, Gül İpek & Akbostancı, Elif & Türüt-Aşık, Serap, 2022. "Ecological unequal exchange between Turkey and the European Union: An assessment from value added perspective," Ecological Economics, Elsevier, vol. 192(C).
    18. Leonard, Matthew D. & Michaelides, Efstathios E. & Michaelides, Dimitrios N., 2020. "Energy storage needs for the substitution of fossil fuel power plants with renewables," Renewable Energy, Elsevier, vol. 145(C), pages 951-962.
    19. Torras, Mariano & Boyce, James K., 1998. "Income, inequality, and pollution: a reassessment of the environmental Kuznets Curve," Ecological Economics, Elsevier, vol. 25(2), pages 147-160, May.
    20. Halkos, George E. & Gkampoura, Eleni-Christina, 2021. "Evaluating the effect of economic crisis on energy poverty in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    21. Li, Wenqing & Qiao, Yuanbo & Li, Xiao & Wang, Yutao, 2022. "Energy consumption, pollution haven hypothesis, and Environmental Kuznets Curve: Examining the environment–economy link in belt and road initiative countries," Energy, Elsevier, vol. 239(PE).
    22. Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
    23. Schaffartzik, Anke & Duro, Juan Antonio, 2022. "‘Dematerialization’ in times of economic crisis: A regional analysis of the Spanish economy in material and monetary terms," Resources Policy, Elsevier, vol. 78(C).
    24. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.
    25. Bonilla, Javier & Blanco, Julian & Zarza, Eduardo & Alarcón-Padilla, Diego C., 2022. "Feasibility and practical limits of full decarbonization of the electricity market with renewable energy: Application to the Spanish power sector," Energy, Elsevier, vol. 239(PE).
    26. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    27. Frodyma, Katarzyna & Papież, Monika & Śmiech, Sławomir, 2022. "Revisiting the Environmental Kuznets Curve in the European Union countries," Energy, Elsevier, vol. 241(C).
    28. Kubiszewski, Ida & Costanza, Robert & Franco, Carol & Lawn, Philip & Talberth, John & Jackson, Tim & Aylmer, Camille, 2013. "Beyond GDP: Measuring and achieving global genuine progress," Ecological Economics, Elsevier, vol. 93(C), pages 57-68.
    29. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    30. M. Fischer‐Kowalski & F. Krausmann & S. Giljum & S. Lutter & A. Mayer & S. Bringezu & Y. Moriguchi & H. Schütz & H. Schandl & H. Weisz, 2011. "Methodology and Indicators of Economy‐wide Material Flow Accounting," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 855-876, December.
    31. Pablo Muñoz & Stefan Giljum & Jordi Roca, 2009. "The Raw Material Equivalents of International Trade," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 881-897, December.
    32. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    33. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    34. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    35. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    36. Oliver Schwab & Ottavia Zoboli & Helmut Rechberger, 2017. "A Data Characterization Framework for Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 21(1), pages 16-25, February.
    37. Steinberger, Julia K. & Krausmann, Fridolin & Eisenmenger, Nina, 2010. "Global patterns of materials use: A socioeconomic and geophysical analysis," Ecological Economics, Elsevier, vol. 69(5), pages 1148-1158, March.
    38. Peter L. Daniels, 2002. "Approaches for Quantifying the Metabolism of Physical Economies: A Comparative Survey: Part II: Review of Individual Approaches," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 65-88, January.
    39. Moran, Daniel D. & Lenzen, Manfred & Kanemoto, Keiichiro & Geschke, Arne, 2013. "Does ecologically unequal exchange occur?," Ecological Economics, Elsevier, vol. 89(C), pages 177-186.
    40. Moomaw, William R. & Unruh, Gregory C., 1997. "Are environmental Kuznets curves misleading us? The case of CO2 emissions," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 451-463, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Fang & Khan, Muhammad Amir & Hayat, Malik Tahir, 2024. "Empirical linkages among financial development, digital infrastructure, energy transition and natural resources footprints in BRICS region," Resources Policy, Elsevier, vol. 90(C).
    2. Grzegorz Zimon & Dulal Chandra Pattak & Liton Chandra Voumik & Salma Akter & Funda Kaya & Robert Walasek & Konrad Kochański, 2023. "The Impact of Fossil Fuels, Renewable Energy, and Nuclear Energy on South Korea’s Environment Based on the STIRPAT Model: ARDL, FMOLS, and CCR Approaches," Energies, MDPI, vol. 16(17), pages 1-21, August.
    3. Jahanger, Atif & Usman, Muhammad & Kousar, Rakhshanda & Balsalobre-Lorente, Daniel, 2023. "Implications for optimal abatement path through the deployment of natural resources, human development, and energy consumption in the era of digitalization," Resources Policy, Elsevier, vol. 86(PB).
    4. Marra, Alessandro & Colantonio, Emiliano, 2023. "On public policies in the energy transition: Evidence on the role of socio-technical regimes for renewable technologies," Energy Economics, Elsevier, vol. 128(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulucak, Recep & Koçak, Emrah & Erdoğan, Seyfettin & Kassouri, Yacouba, 2020. "Investigating the non-linear effects of globalization on material consumption in the EU countries: Evidence from PSTR estimation," Resources Policy, Elsevier, vol. 67(C).
    2. Alonso-Fernández, Pablo & Regueiro-Ferreira, Rosa María, 2024. "The effect of the economic cycles on material requirements: Analysing the dematerialization in developed countries," Ecological Economics, Elsevier, vol. 222(C).
    3. Pablo Alonso-Fernández & Rosa María Regueiro-Ferreira, 2021. "An Approximation to the Environmental Impact of Economic Growth Using the Material Flow Analysis: Differences between Production and Consumption Methods, Applied to China, United Kingdom and USA (1990," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    4. Alonso-Fernández, Pablo & Regueiro-Ferreira, Rosa María, 2022. "Extractivism, ecologically unequal exchange and environmental impact in South America: A study using Material Flow Analysis (1990–2017)," Ecological Economics, Elsevier, vol. 194(C).
    5. Ullah, Asad & Ali, Amjad, 2024. "Investigating Corruption, Income Inequality, and Environmental Degradation in Pakistan: A Time Series Analysis," MPRA Paper 121291, University Library of Munich, Germany.
    6. Fakher, Hossein Ali & Ahmed, Zahoor & Acheampong, Alex O. & Nathaniel, Solomon Prince, 2023. "Renewable energy, nonrenewable energy, and environmental quality nexus: An investigation of the N-shaped Environmental Kuznets Curve based on six environmental indicators," Energy, Elsevier, vol. 263(PA).
    7. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    8. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    9. Jie HE, 2005. "Economic Determinants for China’s Industrial SO2 Emission: Reduced vs. Structural form and the role of international trade," Working Papers 200505, CERDI.
    10. Stern, David I. & Common, Michael S., 2001. "Is There an Environmental Kuznets Curve for Sulfur?," Journal of Environmental Economics and Management, Elsevier, vol. 41(2), pages 162-178, March.
    11. Martin Neve & Bertrand Hamaide, 2017. "Environmental Kuznets Curve with Adjusted Net Savings as a Trade-Off Between Environment and Development," Australian Economic Papers, Wiley Blackwell, vol. 56(1), pages 39-58, March.
    12. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    13. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    14. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    15. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    16. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    17. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    18. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    19. Teixidó-Figueras, Jordi & Duro, Juan Antonio, 2015. "The building blocks of International Ecological Footprint inequality: A Regression-Based Decomposition," Ecological Economics, Elsevier, vol. 118(C), pages 30-39.
    20. Piaggio, Matías & Padilla, Emilio, 2012. "CO2 emissions and economic activity: Heterogeneity across countries and non-stationary series," Energy Policy, Elsevier, vol. 46(C), pages 370-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.