[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v95y2016icp155-174.html
   My bibliography  Save this article

A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study

Author

Listed:
  • Baldvinsson, Ivar
  • Nakata, Toshihiko
Abstract
This paper presents a high spatial resolution based method for design and operation of a low temperature district heating system and evaluates its feasibility and energy and exergy performance through case comparison. Selected case area is existing district in North Japan. The district heating system design and operation follows a bottom-up approach. The study scope takes into account the demand side, distribution and supply side where biomass CHP (combined heat and power) plant is selected as main supply source. Radiating floor heating system model is used to estimate building temperature requirement. Results indicate that low temperature heating is infeasible for non-residential buildings in North Japan at high loads. Improving building insulation decreases heating quality demand considerably. Low temperature district heating performs better than medium temperature, especially in terms of exergy efficiency, however requires a bit larger pipe diameter indicating cost trade-off between installation and operation cost. Implementing cascade configuration based on quality level of building energy demand results in highest system performance. Lower network temperature provides least net primary energy consumption primarily due to higher electricity generation of CHP plant. This transcends to favourable system exergy efficiency of low temperature operation due to high quality of electricity, increasing the exergy of the product.

Suggested Citation

  • Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
  • Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:155-174
    DOI: 10.1016/j.energy.2015.11.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.11.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    2. Sanaei, Sayyed Mohammad & Nakata, Toshihiko, 2012. "Optimum design of district heating: Application of a novel methodology for improved design of community scale integrated energy systems," Energy, Elsevier, vol. 38(1), pages 190-204.
    3. Li, Hongwei & Svendsen, Svend, 2012. "Energy and exergy analysis of low temperature district heating network," Energy, Elsevier, vol. 45(1), pages 237-246.
    4. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    5. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    6. Dalla Rosa, A. & Li, H. & Svendsen, S., 2011. "Method for optimal design of pipes for low-energy district heating, with focus on heat losses," Energy, Elsevier, vol. 36(5), pages 2407-2418.
    7. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    8. Dalla Rosa, A. & Boulter, R. & Church, K. & Svendsen, S., 2012. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study," Energy, Elsevier, vol. 45(1), pages 960-974.
    9. Zheng, Guozhong & Li, Feng & Tian, Zhe & Zhu, Neng & Li, Qianru & Zhu, Han, 2012. "Operation strategy analysis of a geothermal step utilization heating system," Energy, Elsevier, vol. 44(1), pages 458-468.
    10. Chittum, Anna & Østergaard, Poul Alberg, 2014. "How Danish communal heat planning empowers municipalities and benefits individual consumers," Energy Policy, Elsevier, vol. 74(C), pages 465-474.
    11. Utlu, Zafer & Hepbasli, Arif, 2007. "Parametrical investigation of the effect of dead (reference) state on energy and exergy utilization efficiencies of residential-commercial sectors: A review and an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 603-634, May.
    12. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    13. Gong, Mei & Werner, Sven, 2015. "Exergy analysis of network temperature levels in Swedish and Danish district heating systems," Renewable Energy, Elsevier, vol. 84(C), pages 106-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    2. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    3. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    4. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    5. Zhang, Yali & Li, Wenqi & Wu, Feng, 2020. "Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project," Energy, Elsevier, vol. 206(C).
    6. Topal, Halil İbrahim & Tol, Hakan İbrahim & Kopaç, Mehmet & Arabkoohsar, Ahmad, 2022. "Energy, exergy and economic investigation of operating temperature impacts on district heating systems: Transition from high to low-temperature networks," Energy, Elsevier, vol. 251(C).
    7. Shin Fujii & Takaaki Furubayashi & Toshihiko Nakata, 2019. "Design and Analysis of District Heating Systems Utilizing Excess Heat in Japan," Energies, MDPI, vol. 12(7), pages 1-14, March.
    8. Dorotić, Hrvoje & Pukšec, Tomislav & Duić, Neven, 2019. "Economical, environmental and exergetic multi-objective optimization of district heating systems on hourly level for a whole year," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    2. Baldvinsson, Ivar & Nakata, Toshihiko, 2014. "A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method," Energy, Elsevier, vol. 74(C), pages 537-554.
    3. Topal, Halil İbrahim & Tol, Hakan İbrahim & Kopaç, Mehmet & Arabkoohsar, Ahmad, 2022. "Energy, exergy and economic investigation of operating temperature impacts on district heating systems: Transition from high to low-temperature networks," Energy, Elsevier, vol. 251(C).
    4. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    5. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    6. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    7. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    8. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    9. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    10. Čož, T. Duh & Kitanovski, A. & Poredoš, A., 2017. "Exergoeconomic optimization of a district cooling network," Energy, Elsevier, vol. 135(C), pages 342-351.
    11. Yang, Xiaochen & Svendsen, Svend, 2018. "Ultra-low temperature district heating system with central heat pump and local boosters for low-heat-density area: Analyses on a real case in Denmark," Energy, Elsevier, vol. 159(C), pages 243-251.
    12. Helge Averfalk & Fredric Ottermo & Sven Werner, 2019. "Pipe Sizing for Novel Heat Distribution Technology," Energies, MDPI, vol. 12(7), pages 1-17, April.
    13. Kruczek, Tadeusz, 2013. "Determination of annual heat losses from heat and steam pipeline networks and economic analysis of their thermomodernisation," Energy, Elsevier, vol. 62(C), pages 120-131.
    14. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    15. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    16. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
    17. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    18. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    19. Dénarié, A. & Aprile, M. & Motta, M., 2019. "Heat transmission over long pipes: New model for fast and accurate district heating simulations," Energy, Elsevier, vol. 166(C), pages 267-276.
    20. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:155-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.