[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp575-583.html
   My bibliography  Save this article

Electrochemical performance study of solid oxide fuel cell using lattice Boltzmann method

Author

Listed:
  • Xu, Han
  • Dang, Zheng
  • Bai, Bo-Feng
Abstract
A comprehensive numerical model was developed to predict the electrochemical performance of solid oxide fuel cell (SOFC). The multi-component Lattice Boltzmann (LB) model based on kinetic theory for gas mixtures combined with a representative elementary volume (REV) scale LB algorithm based on the Brinkman equation for flows in porous media, the Butler–Volmer equation and Ohm's law were adopted to deal with the concentration, activation and ohmic overpotentials, respectively. The volt–ampere characteristics were calculated and compared with those obtained by the existing electrochemical model, as well as the experimental data. It was shown that the electrochemical model given by this paper was capable of describing the electrochemical performance much more accurately because of the kinetic nature of the LB method which was based on microscopic models and mesoscopic kinetic equations for fluids, and the accurate prediction of multi-component mass transfer in SOFC porous electrodes affected the simulation of the cell electrochemical performance significantly. Moreover, the effects of different electrode geometrical and operating parameters on the cell performance were investigated. The developed electrochemical model based on LB algorithm at REV scale is useful for the design and optimization of SOFC.

Suggested Citation

  • Xu, Han & Dang, Zheng & Bai, Bo-Feng, 2014. "Electrochemical performance study of solid oxide fuel cell using lattice Boltzmann method," Energy, Elsevier, vol. 67(C), pages 575-583.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:575-583
    DOI: 10.1016/j.energy.2014.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doherty, Wayne & Reynolds, Anthony & Kennedy, David, 2010. "Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus," Energy, Elsevier, vol. 35(12), pages 4545-4555.
    2. Calise, F. & Dentice d’Accadia, M. & Palombo, A. & Vanoli, L., 2006. "Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System," Energy, Elsevier, vol. 31(15), pages 3278-3299.
    3. Liso, Vincenzo & Olesen, Anders Christian & Nielsen, Mads Pagh & Kær, Søren Knudsen, 2011. "Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system," Energy, Elsevier, vol. 36(7), pages 4216-4226.
    4. Chakraborty, Uday Kumar, 2009. "Static and dynamic modeling of solid oxide fuel cell using genetic programming," Energy, Elsevier, vol. 34(6), pages 740-751.
    5. Arpino, F. & Massarotti, N., 2009. "Numerical simulation of mass and energy transport phenomena in solid oxide fuel cells," Energy, Elsevier, vol. 34(12), pages 2033-2041.
    6. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.
    7. Bang-Møller, C. & Rokni, M. & Elmegaard, B. & Ahrenfeldt, J. & Henriksen, U.B., 2013. "Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells," Energy, Elsevier, vol. 58(C), pages 527-537.
    8. Iwai, H. & Yamamoto, Y. & Saito, M. & Yoshida, H., 2011. "Numerical simulation of intermediate-temperature direct-internal-reforming planar solid oxide fuel cell," Energy, Elsevier, vol. 36(4), pages 2225-2234.
    9. Hofmann, P. & Panopoulos, K.D. & Fryda, L.E. & Kakaras, E., 2009. "Comparison between two methane reforming models applied to a quasi-two-dimensional planar solid oxide fuel cell model," Energy, Elsevier, vol. 34(12), pages 2151-2157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tafaoli-Masoule, M. & Bahrami, A. & Elsayed, E.M., 2014. "Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm," Energy, Elsevier, vol. 70(C), pages 643-652.
    2. Amedi, Hamid Reza & Bazooyar, Bahamin & Pishvaie, Mahmoud Reza, 2015. "Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell," Energy, Elsevier, vol. 90(P1), pages 605-621.
    3. Tonekabonimoghadam, S. & Akikur, R.K. & Hussain, M.A. & Hajimolana, S. & Saidur, R. & Ping, H.W. & Chakrabarti, M.H. & Brandon, N.P. & Aravind, P.V. & Nayagar, J.N.S. & Hashim, M.A., 2015. "Mathematical modelling and experimental validation of an anode-supported tubular solid oxide fuel cell for heat and power generation," Energy, Elsevier, vol. 90(P2), pages 1759-1768.
    4. Ye, Luhan & Lv, Weiqiang & Zhang, Kelvin H.L. & Wang, Xiaoning & Yan, Pengfei & Dickerson, James H. & He, Weidong, 2015. "A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries," Energy, Elsevier, vol. 83(C), pages 669-673.
    5. Dang, Zheng & Xu, Han, 2016. "Pore scale investigation of gaseous mixture flow in porous anode of solid oxide fuel cell," Energy, Elsevier, vol. 107(C), pages 295-304.
    6. Chang, Ikwhang & Bae, Jiwoong & Park, Joonho & Lee, Sunho & Ban, Myeongseok & Park, Taehyun & Lee, Yoon Ho & Song, Han Ho & Kim, Young-Beom & Cha, Suk Won, 2016. "A thermally self-sustaining solid oxide fuel cell system at ultra-low operating temperature (319 °C)," Energy, Elsevier, vol. 104(C), pages 107-113.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahya, Abir & Ferrero, Domenico & Dhahri, Hacen & Leone, Pierluigi & Slimi, Khalifa & Santarelli, Massimo, 2018. "Electrochemical performance of solid oxide fuel cell: Experimental study and calibrated model," Energy, Elsevier, vol. 142(C), pages 932-943.
    2. Xenos, Dionysios P. & Hofmann, Philipp & Panopoulos, Kyriakos D. & Kakaras, Emmanuel, 2015. "Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™," Energy, Elsevier, vol. 81(C), pages 84-102.
    3. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    4. He, Zhongjie & Birgersson, E. & Li, Hua, 2014. "Reduced non-isothermal model for the planar solid oxide fuel cell and stack," Energy, Elsevier, vol. 70(C), pages 478-492.
    5. Amedi, Hamid Reza & Bazooyar, Bahamin & Pishvaie, Mahmoud Reza, 2015. "Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell," Energy, Elsevier, vol. 90(P1), pages 605-621.
    6. Rokni, Masoud, 2014. "Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine," Energy, Elsevier, vol. 76(C), pages 19-31.
    7. Chakraborty, Uday Kumar, 2011. "An error in solid oxide fuel cell stack modeling," Energy, Elsevier, vol. 36(2), pages 801-802.
    8. Rashid, Kashif & Dong, Sang Keun & Mehran, Muhammad Taqi, 2017. "Numerical investigations to determine the optimal operating conditions for 1 kW-class flat-tubular solid oxide fuel cell stack," Energy, Elsevier, vol. 141(C), pages 673-691.
    9. Mounir, Hamid & Belaiche, Mohamed & El Marjani, Abdellatif & El Gharad, Abdellah, 2014. "Thermal stress and probability of survival investigation in a multi-bundle integrated-planar solid oxide fuel cells IP-SOFC (integrated-planar solid oxide fuel cell)," Energy, Elsevier, vol. 66(C), pages 378-386.
    10. Doherty, Wayne & Reynolds, Anthony & Kennedy, David, 2010. "Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus," Energy, Elsevier, vol. 35(12), pages 4545-4555.
    11. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    12. Zhao, Hongbin & Jiang, Ting & Hou, Hucan, 2015. "Performance analysis of the SOFC–CCHP system based on H2O/Li–Br absorption refrigeration cycle fueled by coke oven gas," Energy, Elsevier, vol. 91(C), pages 983-993.
    13. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    14. Yang, Fei & Gu, Jianmin & Ye, Luhan & Zhang, Zuoxiang & Rao, Gaofeng & Liang, Yachun & Wen, Kechun & Zhao, Jiyun & Goodenough, John B. & He, Weidong, 2016. "Justifying the significance of Knudsen diffusion in solid oxide fuel cells," Energy, Elsevier, vol. 95(C), pages 242-246.
    15. Obara, Shin'ya & Morel Rios, Jorge Ricardo & Okada, Masaki, 2015. "Control of cyclic fluctuations in solid oxide fuel cell cogeneration accompanied by photovoltaics," Energy, Elsevier, vol. 91(C), pages 994-1008.
    16. Pan, Zehua & Shen, Jian & Wang, Jingyi & Xu, Xinhai & Chan, Wei Ping & Liu, Siyu & Zhou, Yexin & Yan, Zilin & Jiao, Zhenjun & Lim, Teik-Thye & Zhong, Zheng, 2022. "Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 308(C).
    17. Hong, Sung Kook & Dong, Sang Keun & Han, Jeong Ok & Lee, Joong Seong & Lee, Young Chul, 2013. "Numerical study of effect of operating and design parameters for design of steam reforming reactor," Energy, Elsevier, vol. 61(C), pages 410-418.
    18. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    19. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    20. Rokni, Masoud, 2013. "Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels," Energy, Elsevier, vol. 61(C), pages 87-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:575-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.