[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i12p5376-5384.html
   My bibliography  Save this article

Complementarity of hydro and wind power: Improving the risk profile of energy inflows

Author

Listed:
  • Denault, Michel
  • Dupuis, Debbie
  • Couture-Cardinal, Sébastien
Abstract
The complementarity of two renewable energy sources, namely hydro and wind, is investigated. We consider the diversification effect of wind power to reduce the risk of water inflow shortages, an important energy security concern for hydropower-based economic zones (e.g. Québec and Norway). Our risk measure is based on the probability of a production deficit, in a manner akin to the value-at-risk, simulation analysis of financial portfolios. We examine whether the risk level of a mixed hydro-and-wind portfolio of generating assets improves on the risk of an all-hydro portfolio, by relaxing the dependence on water inflows and attenuating the impact of droughts. Copulas are used to model the dependence between the two sources of energy. The data considered, over the period 1958-2003, are for the province of Québec, which possesses large hydro and wind resources. Our results indicate that for all scenarios considered, any proportion of wind up to 30% improves the production deficit risk profile of an all-hydro system. We can also estimate the value, in TWÂ h, of any additional one percent of wind in the portfolio.

Suggested Citation

  • Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5376-5384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00578-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    2. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    3. Kaldellis, J. K. & Kavadias, K. A., 2001. "Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfilment," Applied Energy, Elsevier, vol. 70(4), pages 333-354, December.
    4. Drake, Ben & Hubacek, Klaus, 2007. "What to expect from a greater geographic dispersion of wind farms?--A risk portfolio approach," Energy Policy, Elsevier, vol. 35(8), pages 3999-4008, August.
    5. Belanger, Camille & Gagnon, Luc, 2002. "Adding wind energy to hydropower," Energy Policy, Elsevier, vol. 30(14), pages 1279-1284, November.
    6. Stuart G. Coles & Jonathan A. Tawn, 1994. "Statistical Methods for Multivariate Extremes: An Application to Structural Design," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 1-31, March.
    7. Ilinca, Adrian & McCarthy, Ed & Chaumel, Jean-Louis & Rétiveau, Jean-Louis, 2003. "Wind potential assessment of Quebec Province," Renewable Energy, Elsevier, vol. 28(12), pages 1881-1897.
    8. Førsund, Finn R. & Singh, Balbir & Jensen, Trond & Larsen, Cato, 2008. "Phasing in wind-power in Norway: Network congestion and crowding-out of hydropower," Energy Policy, Elsevier, vol. 36(9), pages 3514-3520, September.
    9. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2008. "Network constrained wind integration on Vancouver Island," Energy Policy, Elsevier, vol. 36(2), pages 591-602, February.
    10. Jaramillo, O.A. & Borja, M.A. & Huacuz, J.M., 2004. "Using hydropower to complement wind energy: a hybrid system to provide firm power," Renewable Energy, Elsevier, vol. 29(11), pages 1887-1909.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    2. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    3. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    4. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    5. Cuervo, Felipe Isaza & Botero, Sergio Botero, 2016. "Wind power reliability valuation in a Hydro-Dominated power market: The Colombian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1359-1372.
    6. Gebretsadik, Yohannes & Fant, Charles & Strzepek, Kenneth & Arndt, Channing, 2016. "Optimized reservoir operation model of regional wind and hydro power integration case study: Zambezi basin and South Africa," Applied Energy, Elsevier, vol. 161(C), pages 574-582.
    7. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    8. Suomalainen, Kiti & Pritchard, Geoffrey & Sharp, Basil & Yuan, Ziqi & Zakeri, Golbon, 2015. "Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand," Applied Energy, Elsevier, vol. 137(C), pages 445-462.
    9. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    10. Kapsali, M. & Kaldellis, J.K., 2010. "Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms," Applied Energy, Elsevier, vol. 87(11), pages 3475-3485, November.
    11. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    12. Julia Merino & Carlos Veganzones & Jose A. Sanchez & Sergio Martinez & Carlos A. Platero, 2012. "Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands," Energies, MDPI, vol. 5(7), pages 1-19, July.
    13. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    14. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    15. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    16. Jure Margeta & Zvonimir Glasnovic, 2011. "Hybrid RES-HEP Systems Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2219-2239, July.
    17. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    18. François, B. & Zoccatelli, D. & Borga, M., 2017. "Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods," Energy, Elsevier, vol. 127(C), pages 716-729.
    19. Drake, Ben & Hubacek, Klaus, 2007. "What to expect from a greater geographic dispersion of wind farms?--A risk portfolio approach," Energy Policy, Elsevier, vol. 35(8), pages 3999-4008, August.
    20. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5376-5384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.