[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v182y2023ics0301421523003488.html
   My bibliography  Save this article

Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions

Author

Listed:
  • Ruhnau, Oliver
  • Schiele, Johanna
Abstract
In many net-zero energy scenarios, electrolytic hydrogen is a key component to decarbonize hard-to-abate sectors and to provide flexibility to the power sector. In current energy systems that are not yet fully decarbonized, however, the hydrogen ramp-up raises the concern of increasing power sector emissions. To avoid such additional emissions, recent EU regulation defines requirements for electrolytic hydrogen to qualify as green along three dimensions: the additionality, the proximity, and the simultaneity of renewable electricity generation. Focusing on the temporal dimension, this article investigates the effects of a strict hourly simultaneity requirement, full temporal flexibility, as well as simultaneity exemptions in the current EU regulation. We develop a model of a renewables-hydrogen project, consisting of individual wind turbines, solar panels, hydrogen electrolysis, and hydrogen storage. As a novelty, the model optimizes not only dispatch but also investment decisions, and we expose it to different regulatory conditions. We show that a flexible definition of green hydrogen does not necessarily increase power sector emissions. By contrast, requiring hourly simultaneity implies that rational investors build much larger wind turbines, hydrogen electrolyzers, and hydrogen storage than needed—meaning additional costs and embedded carbon, underutilized assets, and a potential slow-down of green hydrogen deployment. These adverse effects can only partially be mitigated by including solar panels and by the EU simultaneity exceptions. We argue that current energy transition trends further lower the risk of increasing power sector emissions under a flexible definition of green hydrogen and recommend this as the way forward for a sustainable hydrogen policy.

Suggested Citation

  • Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:enepol:v:182:y:2023:i:c:s0301421523003488
    DOI: 10.1016/j.enpol.2023.113763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523003488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    2. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    3. Parra, David & Valverde, Luis & Pino, F. Javier & Patel, Martin K., 2019. "A review on the role, cost and value of hydrogen energy systems for deep decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 279-294.
    4. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    5. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    6. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    7. Stiewe, Clemens & Ruhnau, Oliver & Hirth, Lion, 2022. "European industry responds to high energy prices: The case of German ammonia production," EconStor Preprints 253251, ZBW - Leibniz Information Centre for Economics.
    8. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
    9. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    10. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 278.
    11. vom Scheidt, Frederik & Qu, Jingyi & Staudt, Philipp & Mallapragada, Dharik S. & Weinhardt, Christof, 2022. "Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals," Energy Policy, Elsevier, vol. 161(C).
    12. Jörn C. Richstein & Seyed Saeed Hosseinioun, 2020. "Industrial Demand Response: How Network Tariffs and Regulation Do (Not) Impact Flexibility Provision in Electricity Markets and Reserves," Discussion Papers of DIW Berlin 1853, DIW Berlin, German Institute for Economic Research.
    13. Falko Ueckerdt & Christian Bauer & Alois Dirnaichner & Jordan Everall & Romain Sacchi & Gunnar Luderer, 2021. "Potential and risks of hydrogen-based e-fuels in climate change mitigation," Nature Climate Change, Nature, vol. 11(5), pages 384-393, May.
    14. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    15. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    16. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabra, Natalia & Reguant, Mar, 2024. "The energy transition: A balancing act," Resource and Energy Economics, Elsevier, vol. 76(C).
    2. Ricks, Wilson & Gagnon, Pieter & Jenkins, Jesse D., 2024. "Short-run marginal emission factors neglect impactful phenomena and are unsuitable for assessing the power sector emissions impacts of hydrogen electrolysis," Energy Policy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing power sector emissions," EconStor Preprints 258999, ZBW - Leibniz Information Centre for Economics.
    2. Ruhnau, Oliver & Schiele, Johanna, 2022. "Flexible green hydrogen: Economic benefits without increasing emissions," EconStor Preprints 253267, ZBW - Leibniz Information Centre for Economics.
    3. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    4. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    5. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    6. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    7. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    8. Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
    9. Hirth, Lion & Khanna, Tarun M. & Ruhnau, Oliver, 2024. "How aggregate electricity demand responds to hourly wholesale price fluctuations," Energy Economics, Elsevier, vol. 135(C).
    10. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    11. Daiya Isogawa & Hiroshi Ohashi & Tokunari Anai, 2024. "The Role of Advance Notice in Shaping Industrial Response to Time-Varying Electricity Prices," CIRJE F-Series CIRJE-F-1226, CIRJE, Faculty of Economics, University of Tokyo.
    12. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    14. Lu, Qing & Zhang, Yufeng, 2022. "A multi-objective optimization model considering users' satisfaction and multi-type demand response in dynamic electricity price," Energy, Elsevier, vol. 240(C).
    15. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    17. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    18. Saebi, Javad & Ghasemi, Abolfazl & Hojjat, Mehrdad, 2022. "Design and implementation of a competitive framework for a day-ahead demand-response program in Iran," Utilities Policy, Elsevier, vol. 77(C).
    19. Yassuda Yamashita, Daniela & Vechiu, Ionel & Gaubert, Jean-Paul, 2021. "Two-level hierarchical model predictive control with an optimised cost function for energy management in building microgrids," Applied Energy, Elsevier, vol. 285(C).
    20. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:182:y:2023:i:c:s0301421523003488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.