[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v110y2017icp20-30.html
   My bibliography  Save this article

Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?

Author

Listed:
  • Contestabile, Marcello
  • Alajaji, Mohammed
  • Almubarak, Bader
Abstract
Encouraged by the falling cost of batteries, electric vehicle (EV) policy today focuses on expediting electrification, paying comparatively little attention to the cost of the particular type of EVs and charging infrastructure deployed. This paper argues that, due to its strong influence on EV innovation paths, EV policy could be better designed if it paid more attention to cost and technology development risk. In particular, using a model that estimates the incremental cost of different EV and infrastructure mixes over the whole passenger car fleet, we find that EV policy with a strong bias towards long-range battery electric vehicles (BEVs) risks leading to higher costs of electrification in the medium term, possibly exceeding the ability of governments to sustain the necessary incentives until battery cost drops sufficiently. We also find that promoting a balanced mix of BEVs and plug-in hybrid electric vehicles (PHEVs) may set the electrification of passenger cars on a lower risk, lower cost path. Examining EV policy in the UK and in California, we find that it is generally not incompatible with achieving balanced mixes of BEVs and PHEVs. However some fine tuning would allow to better balance medium term risks and long term goals.

Suggested Citation

  • Contestabile, Marcello & Alajaji, Mohammed & Almubarak, Bader, 2017. "Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?," Energy Policy, Elsevier, vol. 110(C), pages 20-30.
  • Handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:20-30
    DOI: 10.1016/j.enpol.2017.07.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517304937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.07.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Offer, G.J. & Contestabile, M. & Howey, D.A. & Clague, R. & Brandon, N.P., 2011. "Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK," Energy Policy, Elsevier, vol. 39(4), pages 1939-1950, April.
    2. N/A, 2006. "The World Economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 196(1), pages 10-35, April.
    3. Åhman, Max & Nilsson, Lars J., 2008. "Path dependency and the future of advanced vehicles and biofuels," Utilities Policy, Elsevier, vol. 16(2), pages 80-89, June.
    4. N/A, 2006. "The World Economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 195(1), pages 9-33, January.
    5. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    6. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    7. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    8. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    9. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    10. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    11. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaoli & Huang, Lucheng & Daim, Tugrul & Li, Xin & Li, Zhiqiang, 2021. "Evaluation of China's new energy vehicle policy texts with quantitative and qualitative analysis," Technology in Society, Elsevier, vol. 67(C).
    2. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Silvia Tomasi & Alyona Zubaryeva & Cesare Pizzirani & Margherita Dal Col & Jessica Balest, 2021. "Propensity to Choose Electric Vehicles in Cross-Border Alpine Regions," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    4. Wang, Sinan & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2018. "Impacts of a super credit policy on electric vehicle penetration and compliance with China's Corporate Average Fuel Consumption regulation," Energy, Elsevier, vol. 155(C), pages 746-762.
    5. Glenn Lyons & Greg Marsden, 2021. "Opening out and closing down: the treatment of uncertainty in transport planning’s forecasting paradigm," Transportation, Springer, vol. 48(2), pages 595-616, April.
    6. Di Wang & Yuman Li, 2022. "Measuring the Policy Effectiveness of China’s New-Energy Vehicle Industry and Its Differential Impact on Supply and Demand Markets," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    7. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    8. Tal, Gil & Karanam, Vaishnavi Chaitanya & Favetti, Matthew P. & Sutton, Katrina May & Ogunmayin, Jade Motayo & Raghavan, Seshadri Srinivasa & Nitta, Christopher & Chakraborty, Debapriya & Davis, Adam , 2021. "Emerging Technology Zero Emission Vehicle Household Travel and Refueling Behavior," Institute of Transportation Studies, Working Paper Series qt2v0853tp, Institute of Transportation Studies, UC Davis.
    9. Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.
    10. Hensher, David A. & Wei, Edward & Liu, Wen, 2021. "Battery electric vehicles in cities: Measurement of some impacts on traffic and government revenue recovery," Journal of Transport Geography, Elsevier, vol. 94(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoxue Zheng & Haiyan Lin & Zhi Liu & Dengfeng Li & Carlos Llopis-Albert & Shouzhen Zeng, 2018. "Manufacturing Decisions and Government Subsidies for Electric Vehicles in China: A Maximal Social Welfare Perspective," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    2. Christoph Mazur & Gregory J. Offer & Marcello Contestabile & Nigel Brandon Brandon, 2018. "Comparing the Effects of Vehicle Automation, Policy-Making and Changed User Preferences on the Uptake of Electric Cars and Emissions from Transport," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    3. Zimm, Caroline, 2021. "Improving the understanding of electric vehicle technology and policy diffusion across countries," Transport Policy, Elsevier, vol. 105(C), pages 54-66.
    4. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    5. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    6. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    7. Auvinen, Heidi & Ruutu, Sampsa & Tuominen, Anu & Ahlqvist, Toni & Oksanen, Juha, 2015. "Process supporting strategic decision-making in systemic transitions," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 97-114.
    8. Demeulenaere, Xavier, 2019. "The use of automotive fleets to support the diffusion of Alternative Fuel Vehicles: A Rapid Evidence Assessment of barriers and decision mechanisms," Research in Transportation Economics, Elsevier, vol. 76(C).
    9. Ossenbrink, Jan & Finnsson, Sveinbjoern & Bening, Catharina R. & Hoffmann, Volker H., 2019. "Delineating policy mixes: Contrasting top-down and bottom-up approaches to the case of energy-storage policy in California," Research Policy, Elsevier, vol. 48(10).
    10. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
    11. Sun, Xiaohua & Liu, Xiaoling & Wang, Yun & Yuan, Fang, 2019. "The effects of public subsidies on emerging industry: An agent-based model of the electric vehicle industry," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 281-295.
    12. Teixeira, Ana Carolina Rodrigues & Machado, Pedro Gerber & Borges, Raquel Rocha & Mouette, Dominique, 2020. "Public policies to implement alternative fuels in the road transport sector," Transport Policy, Elsevier, vol. 99(C), pages 345-361.
    13. Napp, T.A. & Few, S. & Sood, A. & Bernie, D. & Hawkes, A. & Gambhir, A., 2019. "The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets," Applied Energy, Elsevier, vol. 238(C), pages 351-367.
    14. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    15. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    17. Daly, Hannah E. & Ó Gallachóir, Brian P., 2012. "Future energy and emissions policy scenarios in Ireland for private car transport," Energy Policy, Elsevier, vol. 51(C), pages 172-183.
    18. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    19. van der Zwaan, Bob & Keppo, Ilkka & Johnsson, Filip, 2013. "How to decarbonize the transport sector?," Energy Policy, Elsevier, vol. 61(C), pages 562-573.
    20. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:20-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.