[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v86y2015icp552-561.html
   My bibliography  Save this article

Analysis and decomposition of energy consumption in the Chilean industry

Author

Listed:
  • Duran, Elisa
  • Aravena, Claudia
  • Aguilar, Renato
Abstract
With rising energy costs and climate change concerns, energy efficiency will be important in maintaining competitiveness and reducing the environmental impact of industrial activities. In this paper we study the Chilean industrial sector, which is the largest consumer of energy within the country. Energy demand and CO2 emissions in Chile have grown rapidly in recent years while energy supply is mostly imported and subject to disruption. Therefore, it is important to understand energy consumption in this sector and determine which sub-sectors have the greatest potential to reduce energy consumption. We used the Index Decomposition Analysis (IDA), applying the Logarithmic Mean Divisia Index method I (LMDI-I), to quantify the impact of diverse driving factors on energy consumption. Furthermore, a panel data analysis was used to determine whether there are differences in energy intensity across firms with different characteristics. Our results show that energy intensity has risen over time although energy consumption remains stable. This fact supports the idea that energy efficiency policies could play an important role for the industrial sector. Additionally, energy consumption and energy intensity follow different patterns in each sub-sector; therefore we conclude that the application of differentiated sectoral policies is preferable over a single global policy.

Suggested Citation

  • Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
  • Handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:552-561
    DOI: 10.1016/j.enpol.2015.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515300434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    3. Ponzo, Ricardo & Dyner, Isaac & Arango, Santiago & Larsen, Erik R., 2011. "Regulation and development of the Argentinean gas market," Energy Policy, Elsevier, vol. 39(3), pages 1070-1079, March.
    4. Xu, X.Y. & Ang, B.W., 2014. "Multilevel index decomposition analysis: Approaches and application," Energy Economics, Elsevier, vol. 44(C), pages 375-382.
    5. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    6. Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
    7. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    8. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    9. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    10. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    11. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    12. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    13. Ma, Hengyun & Oxley, Les & Gibson, John, 2010. "China's energy economy: A survey of the literature," Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
    14. Sudhakara Reddy, B. & Kumar Ray, Binay, 2011. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
    15. Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
    16. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    17. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    18. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    19. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    20. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    21. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    22. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
    23. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    24. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    25. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    26. Worrell, Ernst & Price, Lynn & Martin, Nathan & Farla, Jacco & Schaeffer, Roberto, 1997. "Energy intensity in the iron and steel industry: a comparison of physical and economic indicators," Energy Policy, Elsevier, vol. 25(7-9), pages 727-744.
    27. Ang, B.W. & Liu, Na, 2007. "Negative-value problems of the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 739-742, January.
    28. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    29. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
    30. Nanduri, Mallika & Nyboer, John & Jaccard, Mark, 2002. "Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector," Energy Policy, Elsevier, vol. 30(2), pages 151-163, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    2. Antonios Persakis, 2024. "The impact of climate policy uncertainty on ESG performance, carbon emission intensity and firm performance: evidence from Fortune 1000 firms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24031-24081, September.
    3. Bianco, V. & Proskuryakova, L. & Starodubtseva, A., 2021. "Energy inequality in the Eurasian Economic Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    5. Wu, Wanlu & Cheng, Yuanyuan & Lin, Xiqiao & Yao, Xin, 2019. "How does the implementation of the Policy of Electricity Substitution influence green economic growth in China?," Energy Policy, Elsevier, vol. 131(C), pages 251-261.
    6. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2018. "How can Chile move away from a high carbon economy?," Energy Economics, Elsevier, vol. 69(C), pages 350-366.
    7. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    8. Gao, Yuan & Chong, Chin Hao & Liu, Gengyuan & Casazza, Marco & Xiong, Xiaoping & Liu, Bojie & Zhou, Xuanru & Zhou, Xiaoyong & Li, Zheng & Ni, Weidou & Hao, Yan & Ma, Linwei, 2024. "Identification of carbon responsibility factors based on energy consumption from 2005 to 2020 in China," Energy, Elsevier, vol. 296(C).
    9. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
    10. Bhadbhade, Navdeep & Yilmaz, Selin & Zuberi, Jibran S. & Eichhammer, Wolfgang & Patel, Martin K., 2020. "The evolution of energy efficiency in Switzerland in the period 2000–2016," Energy, Elsevier, vol. 191(C).
    11. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
    12. Lawrence, Akvile & Karlsson, Magnus & Thollander, Patrik, 2018. "Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry," Energy, Elsevier, vol. 153(C), pages 825-835.
    13. John William Grimaldo Guerrero & Andr s David Rodr guez Toscano & Lucelys Vidal Pacheco & Jos Osorio Tovar, 2018. "Analysis of the Energetic and Productive Effects Derived by the Installation of a Conveyor Belt in the Metal-mechanic Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 196-201.
    14. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    15. Xie, Qichang & Bai, Dingchuan & Cong, Xiaoping, 2022. "Modeling the dynamic influences of economic growth and financial development on energy consumption in emerging economies: Insights from dynamic nonlinear approaches," Energy Economics, Elsevier, vol. 116(C).
    16. Lawrence, Akvile & Karlsson, Magnus & Nehler, Therese & Thollander, Patrik, 2019. "Effects of monetary investment, payback time and firm characteristics on electricity saving in energy-intensive industry," Applied Energy, Elsevier, vol. 240(C), pages 499-512.
    17. Peng, Huaxi & Kan, Siyi & Meng, Jing & Li, Shuping & Cui, Can & Tan, Chang & Wang, Zhenyu & Wen, Quan & Guan, Dabo, 2024. "Emission accounting and drivers in South American countries," Applied Energy, Elsevier, vol. 358(C).
    18. Neofytou, H. & Nikas, A. & Doukas, H., 2020. "Sustainable energy transition readiness: A multicriteria assessment index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    20. Muñoz, Katherine, 2019. "Análisis y descomposición sectorial de la energía solar incorporada en las exportaciones de Chile y el rol de las políticas energéticas [Analysis and sectorial decomposition of solar energy incorpo," MPRA Paper 97001, University Library of Munich, Germany, revised 30 Oct 2019.
    21. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).
    22. María del P. Pablo-Romero ,, & Rafael Pozo-Barajas & Javier Sánchez-Rivas, 2017. "Relationships between Tourism and Hospitality Sector Electricity Consumption in Spanish Provinces (1999–2013)," Sustainability, MDPI, vol. 9(4), pages 1-12, March.
    23. Oliver I. Inah & Fidelis I. Abam & Bethrand N. Nwankwojike, 2022. "Exploring the CO2 emissions drivers in the Nigerian manufacturing sector through decomposition analysis and the potential of carbon tax (CAT) policy on CO2 mitigation," Future Business Journal, Springer, vol. 8(1), pages 1-22, December.
    24. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    2. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    3. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    4. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    5. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    6. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    7. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    8. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    9. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    10. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    11. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    12. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
    13. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    14. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    15. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    16. González, Domingo & Martínez, Manuel, 2012. "Changes in CO2 emission intensities in the Mexican industry," Energy Policy, Elsevier, vol. 51(C), pages 149-163.
    17. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    18. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    19. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    20. Torrie, Ralph D. & Stone, Christopher & Layzell, David B., 2016. "Understanding energy systems change in Canada: 1. Decomposition of total energy intensity," Energy Economics, Elsevier, vol. 56(C), pages 101-106.

    More about this item

    Keywords

    Energy efficiency; Index Decomposition Analysis; Logarithmic Mean Divisia Index method I; Chilean industry; Energy intensity;
    All these keywords.

    JEL classification:

    • L52 - Industrial Organization - - Regulation and Industrial Policy - - - Industrial Policy; Sectoral Planning Methods
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:552-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.