[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v110y2022ics0140988322001918.html
   My bibliography  Save this article

Forecasting volatility of EUA futures: New evidence

Author

Listed:
  • Guo, Xiaozhu
  • Huang, Yisu
  • Liang, Chao
  • Umar, Muhammad
Abstract
In this paper, we judge the predictability of EUA's own short- and long-term asymmetry, extreme observations, as well as jump components on its volatility by comparing the GARCH mixed frequency data sampling model and its asymmetry, extreme observation and jump extensions. The in-sample estimation results show that both long- and short-term asymmetries, extreme observations, and jump information have substantial effect on the EUA volatility. The out-of-sample forecast assessment results further illustrate the predictability of these volatility components on EUA volatility. Specially, among all asymmetric extension models, the model extended by both short-term asymmetry, long-term asymmetry and long-term leverage has better predictive performance. Among all extreme observation extension models, the model extended by only short-term extreme observations has better predictive performance. Among all jump extension models, the model extended by only the short-term jump information and the model extended by both the short-term and long-term jump information perform better, and their forecasting performance outperform all the other extension models in most cases. These findings are robust even if the assessment method, the rolling window length and the lag order are changed. It is worth mentioning that the advantage of these extension models in predicting EUA volatility is mainly seen in periods of low volatility. However, even during periods of COVID-19 pandemic, the predictive performance of the two well-performing jump extension models cannot be underestimated.

Suggested Citation

  • Guo, Xiaozhu & Huang, Yisu & Liang, Chao & Umar, Muhammad, 2022. "Forecasting volatility of EUA futures: New evidence," Energy Economics, Elsevier, vol. 110(C).
  • Handle: RePEc:eee:eneeco:v:110:y:2022:i:c:s0140988322001918
    DOI: 10.1016/j.eneco.2022.106021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322001918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    2. Ji, Qiang & Guo, Jian-Feng, 2015. "Oil price volatility and oil-related events: An Internet concern study perspective," Applied Energy, Elsevier, vol. 137(C), pages 256-264.
    3. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    4. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    5. Oestreich, A. Marcel & Tsiakas, Ilias, 2015. "Carbon emissions and stock returns: Evidence from the EU Emissions Trading Scheme," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 294-308.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
    8. Kanamura, Takashi, 2016. "Role of carbon swap trading and energy prices in price correlations and volatilities between carbon markets," Energy Economics, Elsevier, vol. 54(C), pages 204-212.
    9. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    10. Azar, José & Duro, Miguel & Kadach, Igor & Ormazabal, Gaizka, 2021. "The Big Three and corporate carbon emissions around the world," Journal of Financial Economics, Elsevier, vol. 142(2), pages 674-696.
    11. Bolton, Patrick & Kacperczyk, Marcin, 2021. "Do investors care about carbon risk?," Journal of Financial Economics, Elsevier, vol. 142(2), pages 517-549.
    12. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    13. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2020. "Volatility forecasts using stochastic volatility models with nonlinear leverage effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 143-154, March.
    14. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    15. Landis, Florian & Fredriksson, Gustav & Rausch, Sebastian, 2021. "Between- and within-country distributional impacts from harmonizing carbon prices in the EU," Energy Economics, Elsevier, vol. 103(C).
    16. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    17. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    18. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    19. Mazza, Paolo & Petitjean, Mikael, 2015. "How integrated is the European carbon derivatives market?," Finance Research Letters, Elsevier, vol. 15(C), pages 18-30.
    20. Gong, Xu & Liu, Yun & Wang, Xiong, 2021. "Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method," International Review of Financial Analysis, Elsevier, vol. 76(C).
    21. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    22. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    23. Chang, Chia-Lin & McAleer, Michael, 2019. "The fiction of full BEKK: Pricing fossil fuels and carbon emissions," Finance Research Letters, Elsevier, vol. 28(C), pages 11-19.
    24. Painter, Marcus, 2020. "An inconvenient cost: The effects of climate change on municipal bonds," Journal of Financial Economics, Elsevier, vol. 135(2), pages 468-482.
    25. Ströbel, Johannes & Wurgler, Jeffrey, 2021. "What do you think about climate finance?," CEPR Discussion Papers 16622, C.E.P.R. Discussion Papers.
    26. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    27. Hossein Asgharian & Ai Jun Hou & Farrukh Javed, 2013. "The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH‐MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(7), pages 600-612, November.
    28. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    29. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    30. Koch, Nicolas, 2014. "Tail events: A new approach to understanding extreme energy commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 195-205.
    31. Smith, L. Vanessa & Tarui, Nori & Yamagata, Takashi, 2021. "Assessing the impact of COVID-19 on global fossil fuel consumption and CO2 emissions," Energy Economics, Elsevier, vol. 97(C).
    32. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    33. Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
    34. Qiao, Gaoxiu & Yang, Jiyu & Li, Weiping, 2020. "VIX forecasting based on GARCH-type model with observable dynamic jumps: A new perspective," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    35. Hammoudeh, Shawkat & Mokni, Khaled & Ben-Salha, Ousama & Ajmi, Ahdi Noomen, 2021. "Distributional predictability between oil prices and renewable energy stocks: Is there a role for the COVID-19 pandemic?," Energy Economics, Elsevier, vol. 103(C).
    36. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    37. Philip, Dennis & Shi, Yukun, 2015. "Impact of allowance submissions in European carbon emission markets," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 27-37.
    38. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    39. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    40. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    41. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    42. Pan, Zhiyuan & Wang, Yudong & Wu, Chongfeng & Yin, Libo, 2017. "Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 130-142.
    43. Siddique, Md Abubakar & Akhtaruzzaman, Md & Rashid, Afzalur & Hammami, Helmi, 2021. "Carbon disclosure, carbon performance and financial performance: International evidence," International Review of Financial Analysis, Elsevier, vol. 75(C).
    44. Mohsin, Muhammad & Taghizadeh-Hesary, Farhad & Panthamit, Nisit & Anwar, Saba & Abbas, Qaiser & Vo, Xuan Vinh, 2021. "Developing Low Carbon Finance Index: Evidence From Developed and Developing Economies," Finance Research Letters, Elsevier, vol. 43(C).
    45. Acheampong, Alex O. & Amponsah, Mary & Boateng, Elliot, 2020. "Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies," Energy Economics, Elsevier, vol. 88(C).
    46. Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
    47. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    48. Ye, Jing & Xue, Minggao, 2021. "Influences of sentiment from news articles on EU carbon prices," Energy Economics, Elsevier, vol. 101(C).
    49. Marcel Prokopczuk & Lazaros Symeonidis & Chardin Wese Simen, 2016. "Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(8), pages 758-792, August.
    50. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    51. Schlenker, Wolfram & Taylor, Charles A., 2021. "Market expectations of a warming climate," Journal of Financial Economics, Elsevier, vol. 142(2), pages 627-640.
    52. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    53. Feng Ma & Yu Wei & Li Liu & Dengshi Huang, 2018. "Forecasting realized volatility of oil futures market: A new insight," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(4), pages 419-436, July.
    54. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    55. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    56. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    2. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    3. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    4. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    5. Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
    6. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    7. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    8. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    9. Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
    10. Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    11. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
    12. Lu, Botao & Ma, Feng & Wang, Jiqian & Ding, Hui & Wahab, M.I.M., 2021. "Harnessing the decomposed realized measures for volatility forecasting: Evidence from the US stock market," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 672-689.
    13. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    14. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    15. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    16. Jiqian Wang & Feng Ma & Chao Liang & Zhonglu Chen, 2022. "Volatility forecasting revisited using Markov‐switching with time‐varying probability transition," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 1387-1400, January.
    17. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    18. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    19. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    20. Jiqian Wang & Feng Ma & M.I.M. Wahab & Dengshi Huang, 2021. "Forecasting China's Crude Oil Futures Volatility: The Role of the Jump, Jumps Intensity, and Leverage Effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 921-941, August.

    More about this item

    Keywords

    EUA futures; Volatility forecast; Asymmetry; Extreme event; Jump;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:110:y:2022:i:c:s0140988322001918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.