[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v102y2021ics0140988321003418.html
   My bibliography  Save this article

Preferences for curtailable electricity contracts: Can curtailment benefit consumers and the electricity system?

Author

Listed:
  • Harold, Jason
  • Bertsch, Valentin
  • Fell, Harrison
Abstract
Growth in energy demand together with the increased volatility from growing intermittent electricity production requires new sources of demand flexibility to maintain power system balance. End-use specific curtailable electricity contracts are one incentive-based Demand Response (DR) instrument that could help increase flexibility. This paper employs a choice experiment on a representative sample of electricity consumers in Ireland to elicit their preferences for these types of contracts on household appliances during peak load hours. A welfare analysis is then conducted to determine the compensating variation for different contract scenarios and examine the potential savings associated with a selection of scenarios from the perspective of the power system. The results suggest that there could be potential for flexibility from curtailable electricity contracts. On average, consumers are found to be mostly indifferent to curtailable contracts compared to their status quo contract. More specifically, the type of household appliance in these contracts has the most influence on preferences, while contracts at low event frequencies that include advance notice and an opt out are most preferred. In general, the net benefits to the system in curtailing the tumble dryer or dishwasher at low monthly frequencies are found to be positive, while net benefits are estimated to be negative for the other appliances.

Suggested Citation

  • Harold, Jason & Bertsch, Valentin & Fell, Harrison, 2021. "Preferences for curtailable electricity contracts: Can curtailment benefit consumers and the electricity system?," Energy Economics, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:eneeco:v:102:y:2021:i:c:s0140988321003418
    DOI: 10.1016/j.eneco.2021.105454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988321003418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian A. Vossler & Maurice Doyon & Daniel Rondeau, 2012. "Truth in Consequentiality: Theory and Field Evidence on Discrete Choice Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 145-171, November.
    2. Abdullah, Sabah & Mariel, Petr, 2010. "Choice experiment study on the willingness to pay to improve electricity services," Energy Policy, Elsevier, vol. 38(8), pages 4570-4581, August.
    3. Huh, Sung-Yoon & Woo, JongRoul & Lim, Sesil & Lee, Yong-Gil & Kim, Chang Seob, 2015. "What do customers want from improved residential electricity services? Evidence from a choice experiment," Energy Policy, Elsevier, vol. 85(C), pages 410-420.
    4. Bliemer, Michiel C.J. & Collins, Andrew T., 2016. "On determining priors for the generation of efficient stated choice experimental designs," Journal of choice modelling, Elsevier, vol. 21(C), pages 10-14.
    5. Jeff Bennett (ed.), 2011. "The International Handbook on Non-Market Environmental Valuation," Books, Edward Elgar Publishing, number 13490.
    6. Hess, Stephane & Train, Kenneth, 2017. "Correlation and scale in mixed logit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 1-8.
    7. Carlsson, Fredrik & Martinsson, Peter, 2008. "Does it matter when a power outage occurs? -- A choice experiment study on the willingness to pay to avoid power outages," Energy Economics, Elsevier, vol. 30(3), pages 1232-1245, May.
    8. Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
    9. Pepermans, Guido, 2011. "The value of continuous power supply for Flemish households," Energy Policy, Elsevier, vol. 39(12), pages 7853-7864.
    10. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    11. Riccardo Scarpa & Danny Campbell & W. George Hutchinson, 2007. "Benefit Estimates for Landscape Improvements: Sequential Bayesian Design and Respondents’ Rationality in a Choice Experiment," Land Economics, University of Wisconsin Press, vol. 83(4), pages 617-634.
    12. Brazil, William & Harold, Jason & Curtis, John, 2019. "The role of socio-economic characteristics in predicting peak period appliance use," Papers WP628, Economic and Social Research Institute (ESRI).
    13. Hole, Arne Risa, 2008. "Modelling heterogeneity in patients' preferences for the attributes of a general practitioner appointment," Journal of Health Economics, Elsevier, vol. 27(4), pages 1078-1094, July.
    14. Arne Hole & Julie Kolstad, 2012. "Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment," Empirical Economics, Springer, vol. 42(2), pages 445-469, April.
    15. Broberg, Thomas & Persson, Lars, 2016. "Is our everyday comfort for sale? Preferences for demand management on the electricity market," Energy Economics, Elsevier, vol. 54(C), pages 24-32.
    16. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    17. Paul L. Joskow, 2012. "Creating a Smarter U.S. Electricity Grid," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 29-48, Winter.
    18. Richard Carson & Theodore Groves, 2007. "Incentive and informational properties of preference questions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 181-210, May.
    19. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    20. Strauss, Todd, 1994. "Perspectives on interrruptible electric tariffs," Utilities Policy, Elsevier, vol. 4(2), pages 165-172, April.
    21. Interis, Matthew & Petrolia, Daniel, 2014. "The Effects of Consequentiality in Binary- and Multinomial-Choice Surveys," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-16.
    22. W. Michael Hanemann, 1984. "Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 332-341.
    23. Swantje Sundt & Katrin Rehdanz & Jürgen Meyerhoff, 2020. "Consumers’ Willingness to Accept Time-of-Use Tariffs for Shifting Electricity Demand," Energies, MDPI, vol. 13(8), pages 1-17, April.
    24. Delmas, Magali A. & Lessem, Neil, 2014. "Saving power to conserve your reputation? The effectiveness of private versus public information," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 353-370.
    25. Leahy, Eimear & Tol, Richard S.J., 2011. "An estimate of the value of lost load for Ireland," Energy Policy, Elsevier, vol. 39(3), pages 1514-1520, March.
    26. Ozbafli, Aygul & Jenkins, Glenn P., 2016. "Estimating the willingness to pay for reliable electricity supply: A choice experiment study," Energy Economics, Elsevier, vol. 56(C), pages 443-452.
    27. Richter, Laura-Lucia & Pollitt, Michael G., 2018. "Which smart electricity service contracts will consumers accept? The demand for compensation in a platform market," Energy Economics, Elsevier, vol. 72(C), pages 436-450.
    28. Abrate, Graziano & Bruno, Clementina & Erbetta, Fabrizio & Fraquelli, Giovanni & Lorite-Espejo, Azahara, 2016. "A choice experiment on the willingness of households to accept power outages," Utilities Policy, Elsevier, vol. 43(PB), pages 151-164.
    29. Nistor, Silviu & Wu, Jianzhong & Sooriyabandara, Mahesh & Ekanayake, Janaka, 2015. "Capability of smart appliances to provide reserve services," Applied Energy, Elsevier, vol. 138(C), pages 590-597.
    30. Herriges, Joseph & Kling, Catherine & Liu, Chih-Chen & Tobias, Justin, 2010. "What are the consequences of consequentiality?," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 67-81, January.
    31. Hanemann, W Michael, 1991. "Willingness to Pay and Willingness to Accept: How Much Can They Differ?," American Economic Review, American Economic Association, vol. 81(3), pages 635-647, June.
    32. Ma, Chunbo & Burton, Michael, 2016. "Warm glow from green power: Evidence from Australian electricity consumers," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 106-120.
    33. Amador, Francisco Javier & González, Rosa Marina & Ramos-Real, Francisco Javier, 2013. "Supplier choice and WTP for electricity attributes in an emerging market: The role of perceived past experience, environmental concern and energy saving behavior," Energy Economics, Elsevier, vol. 40(C), pages 953-966.
    34. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    35. Riccardo Scarpa & Mara Thiene & Kenneth Train, 2008. "Utility in Willingness to Pay Space: A Tool to Address Confounding Random Scale Effects in Destination Choice to the Alps," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 994-1010.
    36. Zhifeng Gao & Lisa A. House & Jing Xie, 2016. "Online Survey Data Quality and Its Implication for Willingness-to-Pay: A Cross-Country Comparison," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(2), pages 199-221, June.
    37. Ferrini, Silvia & Scarpa, Riccardo, 2007. "Designs with a priori information for nonmarket valuation with choice experiments: A Monte Carlo study," Journal of Environmental Economics and Management, Elsevier, vol. 53(3), pages 342-363, May.
    38. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    39. Andrew A. Goett & Kathleen Hudson & Kenneth E. Train, 2000. "Customers' Choice Among Retail Energy Suppliers: The Willingness-to-Pay for Service Attributes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-28.
    40. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    41. Scarpa, R. & Thiene, M. & Train, K., 2008. "Appendix to Utility in WTP space: a tool to address confounding random scale effects in destination choice to the Alps," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 90(4), pages 1-9, January.
    42. He, Xian & Keyaerts, Nico & Azevedo, Isabel & Meeus, Leonardo & Hancher, Leigh & Glachant, Jean-Michel, 2013. "How to engage consumers in demand response: A contract perspective," Utilities Policy, Elsevier, vol. 27(C), pages 108-122.
    43. Woo, Chi-Keung, 1990. "Efficient Electricity Pricing with Self-Rationing," Journal of Regulatory Economics, Springer, vol. 2(1), pages 69-81, March.
    44. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    45. Simshauser, Paul, 2016. "Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs," Energy Economics, Elsevier, vol. 54(C), pages 108-122.
    46. Birol, Ekin & Karousakis, Katia & Koundouri, Phoebe, 2006. "Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece," Ecological Economics, Elsevier, vol. 60(1), pages 145-156, November.
    47. Brown, Thomas C. & Kingsley, David & Peterson, George L. & Flores, Nicholas E. & Clarke, Andrea & Birjulin, Andrej, 2008. "Reliability of individual valuations of public and private goods: Choice consistency, response time, and preference refinement," Journal of Public Economics, Elsevier, vol. 92(7), pages 1595-1606, July.
    48. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    49. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    50. Vossler, Christian A. & Watson, Sharon B., 2013. "Understanding the consequences of consequentiality: Testing the validity of stated preferences in the field," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 137-147.
    51. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    52. Hensher, David A. & Shore, Nina & Train, Kenneth, 2014. "Willingness to pay for residential electricity supply quality and reliability," Applied Energy, Elsevier, vol. 115(C), pages 280-292.
    53. Alberini, Anna & Bigano, Andrea & Ščasný, Milan & Zvěřinová, Iva, 2018. "Preferences for Energy Efficiency vs. Renewables: What Is the Willingness to Pay to Reduce CO2 Emissions?," Ecological Economics, Elsevier, vol. 144(C), pages 171-185.
    54. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    55. Drysdale, Brian & Wu, Jianzhong & Jenkins, Nick, 2015. "Flexible demand in the GB domestic electricity sector in 2030," Applied Energy, Elsevier, vol. 139(C), pages 281-290.
    56. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ISOGAWA Daiya & OHASHI Hiroshi & ANAI Tokunari, 2022. "Role of Advance Notice on High-priced Hours: Critical peak pricing on industrial demand," Discussion papers 22068, Research Institute of Economy, Trade and Industry (RIETI).
    2. Xu, Shuling & Yang, Zihan & Deng, Nana & Wang, Bo, 2024. "Residents' willingness to be compensated for power rationing during peak hours based on choice experiment," Applied Energy, Elsevier, vol. 367(C).
    3. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    4. Bender, Jonas & Fait, Larissa & Wetzel, Heike, 2024. "Acceptance of demand-side flexibility in the residential heating sector — Evidence from a stated choice experiment in Germany," Energy Policy, Elsevier, vol. 191(C).
    5. David Huckebrink & Valentin Bertsch, 2021. "Integrating Behavioural Aspects in Energy System Modelling—A Review," Energies, MDPI, vol. 14(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertsch, Valentin & Harold, Jason & Fell, Harrison, 2019. "Consumer preferences for end-use specific curtailable electricity contracts on household appliances during peak load hours," Papers WP632, Economic and Social Research Institute (ESRI).
    2. Mark Tocock & Dugald Tinch & Darla Hatton MacDonald & John M. Rose, 2023. "Managing the energy trilemma of reliability, affordability and renewables: Assessing consumer demands with discrete choice experiments," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 155-175, April.
    3. Broberg, Thomas & Daniel, Aemiro Melkamu & Persson, Lars, 2021. "Household preferences for load restrictions: Is there an effect of pro-environmental framing?," Energy Economics, Elsevier, vol. 97(C).
    4. Bernadeta Gołębiowska, 2020. "Preferences for demand side management—a review of choice experiment studies," Working Papers 2020-05, Faculty of Economic Sciences, University of Warsaw.
    5. Manuel Frondel & Stephan Sommer & Lukas Tomberg, 2021. "WTA-WTP Disparity: The Role of Perceived Realism of the Valuation Setting," Land Economics, University of Wisconsin Press, vol. 97(1), pages 196-206.
    6. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    7. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    8. Meles, Tensay Hadush & Lokina, Razack & Mtenga, Erica Louis & Tibanywana, Julieth Julius, 2023. "Stated preferences with survey consequentiality and outcome uncertainty: A split sample discrete choice experiment," EfD Discussion Paper 23-16, Environment for Development, University of Gothenburg.
    9. West, Grant H. & Snell, Heather & Kovacs, Kent & Nayga, Rodolfo M., 2020. "Estimation of the preferences for the intertemporal services from groundwater," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304220, Agricultural and Applied Economics Association.
    10. Hotaling, Chelsea & Bird, Stephen & Heintzelman, Martin D., 2021. "Willingness to pay for microgrids to enhance community resilience," Energy Policy, Elsevier, vol. 154(C).
    11. Morrissey, Karyn & Plater, Andrew & Dean, Mary, 2018. "The cost of electric power outages in the residential sector: A willingness to pay approach," Applied Energy, Elsevier, vol. 212(C), pages 141-150.
    12. Ruokamo, Enni & Kopsakangas-Savolainen, Maria & Meriläinen, Teemu & Svento, Rauli, 2019. "Towards flexible energy demand – Preferences for dynamic contracts, services and emissions reductions," Energy Economics, Elsevier, vol. 84(C).
    13. Aweke, Abinet Tilahun & Navrud, Ståle, 2022. "Valuing energy poverty costs: Household welfare loss from electricity blackouts in developing countries," Energy Economics, Elsevier, vol. 109(C).
    14. Czajkowski, Mikołaj & Bylicki, Michał & Budziński, Wiktor & Buczyński, Mateusz, 2022. "Valuing externalities of outdoor advertising in an urban setting – the case of Warsaw," Journal of Urban Economics, Elsevier, vol. 130(C).
    15. Curtis, John & Brazil, William & Harold, Jason, 2019. "Understanding preference heterogeneity in electricity services: the case of domestic appliance curtailment contracts," Papers WP638, Economic and Social Research Institute (ESRI).
    16. Tensay Hadush Meles & Razack Lokina & Erica Louis Mtenga & Julieth Julius Tibanywana, 2023. "Stated Preferences with Survey Consequentiality and Outcome Uncertainty: A Split Sample Discrete Choice Experiment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 86(4), pages 717-754, December.
    17. Broberg, Thomas & Persson, Lars, 2016. "Is our everyday comfort for sale? Preferences for demand management on the electricity market," Energy Economics, Elsevier, vol. 54(C), pages 24-32.
    18. Meles, Tensay Hadush & Mekonnen, Alemu & Beyene, Abebe D. & Hassen, Sied & Pattanayak, Subhrendu K. & Sebsibie, Samuel & Klug, Thomas & Jeuland, Marc, 2021. "Households' valuation of power outages in major cities of Ethiopia: An application of stated preference methods," Energy Economics, Elsevier, vol. 102(C).
    19. Frondel Manuel & Sommer Stephan, 2017. "Der Wert von Versorgungssicherheit mit Strom: Evidenz für deutsche Haushalte," Zeitschrift für Wirtschaftspolitik, De Gruyter, vol. 66(3), pages 294-317, December.
    20. Motz, Alessandra, 2021. "Security of supply and the energy transition: The households' perspective investigated through a discrete choice model with latent classes," Energy Economics, Elsevier, vol. 97(C).

    More about this item

    Keywords

    Curtailable contracts; Electricity market; Household appliances; Demand response; Consumer welfare; Energy services;
    All these keywords.

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D6 - Microeconomics - - Welfare Economics
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:102:y:2021:i:c:s0140988321003418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.