[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v44y2014icp99-112.html
   My bibliography  Save this article

Decision-support tool for assessing future nuclear reactor generation portfolios

Author

Listed:
  • Jain, Shashi
  • Roelofs, Ferry
  • Oosterlee, Cornelis W.
Abstract
Capital costs, fuel, operation and maintenance (O&M) costs, and electricity prices play a key role in the economics of nuclear power plants. Often standardized reactor designs are required to be locally adapted, which often impacts the project plans and the supply chain. It then becomes difficult to ascertain how these changes will eventually reflect in costs, which makes the capital costs component of nuclear power plants uncertain. Different nuclear reactor types compete economically by having either lower and less uncertain construction costs, increased efficiencies, lower and less uncertain fuel cycles and O&M costs etc. The decision making process related to nuclear power plants requires a holistic approach that takes into account the key economic factors and their uncertainties. We here present a decision-support tool that satisfactorily takes into account the major uncertainties in the cost elements of a nuclear power plant, to provide an optimal portfolio of nuclear reactors. The portfolio so obtained, under our model assumptions and the constraints considered, maximizes the combined returns for a given level of risk or uncertainty. These decisions are made using a combination of real option theory and mean–variance portfolio optimization.

Suggested Citation

  • Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.
  • Handle: RePEc:eee:eneeco:v:44:y:2014:i:c:p:99-112
    DOI: 10.1016/j.eneco.2014.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314000681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pindyck, Robert S., 1993. "Investments of uncertain cost," Journal of Financial Economics, Elsevier, vol. 34(1), pages 53-76, August.
    2. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    3. repec:bla:ecnote:v:33:y:2004:i:1:p:23-54 is not listed on IDEAS
    4. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    5. Kenneth J. Arrow & Anthony C. Fisher, 1974. "Environmental Preservation, Uncertainty, and Irreversibility," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 4, pages 76-84, Palgrave Macmillan.
    6. Fuss, Sabine & Szolgayová, Jana & Khabarov, Nikolay & Obersteiner, Michael, 2012. "Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects," Energy Policy, Elsevier, vol. 40(C), pages 59-68.
    7. Fortin, Ines & Fuss, Sabine & Hlouskova, Jaroslava & Khabarov, Nikolay & Obersteiner, Michael & Szolgayova, Jana, 2007. "An Integrated CVaR and Real Options Approach to Investments in the Energy Sector," Economics Series 209, Institute for Advanced Studies.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    10. Naito, Yuta & Takashima, Ryuta & Kimura, Hiroshi & Madarame, Haruki, 2010. "Evaluating replacement project of nuclear power plants under uncertainty," Energy Policy, Elsevier, vol. 38(3), pages 1321-1329, March.
    11. Geoffrey Rothwell, 2006. "A Real Options Approach to Evaluating New Nuclear Power Plants," The Energy Journal, , vol. 27(1), pages 37-54, January.
    12. John P. Holdren, 2006. "The Energy Innovation Imperative: Addressing Oil Dependence, Climate Change, and Other 21-super-st Century Energy Challenges," Innovations: Technology, Governance, Globalization, MIT Press, vol. 1(2), pages 3-23, April.
    13. Gollier, Christian & Proult, David & Thais, Francoise & Walgenwitz, Gilles, 2005. "Choice of nuclear power investments under price uncertainty: Valuing modularity," Energy Economics, Elsevier, vol. 27(4), pages 667-685, July.
    14. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    15. De Bondt, Werner F. M. & Makhija, Anil K., 1988. "Throwing good money after bad? : Nuclear power plant investment decisions and the relevance of sunk costs," Journal of Economic Behavior & Organization, Elsevier, vol. 10(2), pages 173-199, September.
    16. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    17. Kessides, Ioannis N., 2010. "Nuclear power: Understanding the economic risks and uncertainties," Energy Policy, Elsevier, vol. 38(8), pages 3849-3864, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cardin, Michel-Alexandre & Zhang, Sizhe & Nuttall, William J., 2017. "Strategic real option and flexibility analysis for nuclear power plants considering uncertainty in electricity demand and public acceptance," Energy Economics, Elsevier, vol. 64(C), pages 226-237.
    2. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    3. David Juárez-Luna, 2021. "Power generation portfolios: A parametric formulation of the efficient frontier," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-29, Enero - M.
    4. David Juárez-Luna, 2021. "Power generation portfolios: A parametric formulation of the efficient frontier," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-29, Enero - M.
    5. Juárez-Luna, David, 2020. "Beneficios económicos y ambientales de la energía nuclear [Economic and environmental benefits of nuclear energy]," MPRA Paper 98790, University Library of Munich, Germany.
    6. Zhen, Zaili & Lou, Liyun & Tian, Lixin & Gao, Qibing, 2018. "Investment optimization path of NG power generation in China based on carbon value realization and market linkage," Applied Energy, Elsevier, vol. 210(C), pages 241-255.
    7. Salah Ud-Din Khan & Zeyad Almutairi & Meshari Alanazi, 2021. "Techno-Economic Assessment of Fuel Cycle Facility of System Integrated Modular Advanced Reactor (SMART)," Sustainability, MDPI, vol. 13(21), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    2. Zhang, Mingming & Tang, Yamei & Liu, Liyun & Zhou, Dequn, 2022. "Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Schwartz, Eduardo S., 2002. "Patents and R& D as Real Options," University of California at Los Angeles, Anderson Graduate School of Management qt86b1n43k, Anderson Graduate School of Management, UCLA.
    4. Michail Chronopoulos & Verena Hagspiel & Stein-Erik Fleten, 2017. "Stepwise investment and capacity sizing under uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 447-472, March.
    5. Eduardo S. Schwartz, 2003. "Patents and R&D as Real Options," NBER Working Papers 10114, National Bureau of Economic Research, Inc.
    6. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    7. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    8. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    9. Hsu, Jason C. & Schwartz, Eduardo S., 2008. "A model of R&D valuation and the design of research incentives," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 350-367, December.
    10. Tian, Lixin & Pan, Jianglai & Du, Ruijin & Li, Wenchao & Zhen, Zaili & Qibing, Gao, 2017. "The valuation of photovoltaic power generation under carbon market linkage based on real options," Applied Energy, Elsevier, vol. 201(C), pages 354-362.
    11. Flora, Maria & Tankov, Peter, 2023. "Green investment and asset stranding under transition scenario uncertainty," Energy Economics, Elsevier, vol. 124(C).
    12. Penizzotto, F. & Pringles, R. & Olsina, F., 2019. "Real options valuation of photovoltaic power investments in existing buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Nemat Safarov & Colin Atkinson, 2017. "Natural Gas-Fired Power Plants Valuation And Optimization Under Lévy Copulas And Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-38, February.
    14. Rodrigues, Artur & Armada, Manuel J. Rocha, 2007. "The valuation of modular projects: A real options approach to the value of splitting," Global Finance Journal, Elsevier, vol. 18(2), pages 205-227.
    15. Ingber, Lester, 2000. "High-resolution path-integral development of financial options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 529-558.
    16. Maier, Sebastian & Pflug, Georg C. & Polak, John W., 2020. "Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 285(1), pages 133-147.
    17. Kessides, Ioannis N., 2010. "Nuclear power: Understanding the economic risks and uncertainties," Energy Policy, Elsevier, vol. 38(8), pages 3849-3864, August.
    18. Nemat Safarov & Colin Atkinson, 2016. "Natural gas-fired power plants valuation and optimisation under Levy copulas and regime-switching," Papers 1607.01207, arXiv.org, revised Jul 2016.
    19. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    20. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).

    More about this item

    Keywords

    Optimal nuclear reactor portfolio; Uncertain reactor construction costs; Real option analysis for nuclear power plants; Optimal portfolio analysis for nuclear power plants;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • D92 - Microeconomics - - Micro-Based Behavioral Economics - - - Intertemporal Firm Choice, Investment, Capacity, and Financing
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:44:y:2014:i:c:p:99-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.