[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v44y2014icp456-467.html
   My bibliography  Save this article

On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree

Author

Listed:
  • Charlot, Philippe
  • Marimoutou, Vêlayoudom
Abstract
This study examines the volatility and correlation and their relationships among the euro/US dollar exchange rates, the S&P500 equity indices, and the prices of WTI crude oil and the precious metals (gold, silver, and platinum) over the period 2005 to 2012. Our model links the univariate volatilities with the correlations via a hidden stochastic decision tree. The ensuing Hidden Markov Decision Tree (HMDT) model is in fact an extension of the Hidden Markov Model (HMM) introduced by Jordan et al. (1997). The architecture of this model is the opposite that of the classical deterministic approach based on a binary decision tree and, it allows a probabilistic vision of the relationship between univariate volatility and correlation. Our results are categorized into three groups, namely (1) exchange rates and oil, (2) S&P500 indices, and (3) precious metals. A switching dynamics is seen to characterize the volatilities, while, in the case of the correlations, the series switch from one regime to another, this movement touching a peak during the period of the Subprime crisis in the US, and again during the days following the Tohoku earthquake in Japan. Our findings show that the relationships between volatility and correlation are dependent upon the nature of the series considered, sometimes corresponding to those found in econometric studies, according to which correlation increases in bear markets, at other times differing from them.

Suggested Citation

  • Charlot, Philippe & Marimoutou, Vêlayoudom, 2014. "On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree," Energy Economics, Elsevier, vol. 44(C), pages 456-467.
  • Handle: RePEc:eee:eneeco:v:44:y:2014:i:c:p:456-467
    DOI: 10.1016/j.eneco.2014.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314001054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    2. Erwan Gautier & Ronan Le Saout, 2015. "The Dynamics of Gasoline Prices: Evidence from Daily French Micro Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(6), pages 1063-1089, September.
    3. Philippe Charlot & Vêlayoudom Marimoutou, 2014. "On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree," Post-Print hal-01474252, HAL.
    4. Brian Lucey & Edel Tully, 2005. "Seasonality, Risk And Return In Daily COMEX Gold And Silver Data 1982-2002," The Institute for International Integration Studies Discussion Paper Series iiisdp057, IIIS.
    5. Sjaastad, Larry A. & Scacciavillani, Fabio, 1996. "The price of gold and the exchange rate," Journal of International Money and Finance, Elsevier, vol. 15(6), pages 879-897, December.
    6. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    7. Yongmiao Hong & Jun Tu & Guofu Zhou, 2006. "Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1547-1581, 2007 23.
    8. Baffes, John, 2007. "Oil spills on other commodities," Resources Policy, Elsevier, vol. 32(3), pages 126-134, September.
    9. Golub, Stephen S, 1983. "Oil Prices and Exchange Rates," Economic Journal, Royal Economic Society, vol. 93(371), pages 576-593, September.
    10. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    11. Dueker, Michael J, 1997. "Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
    12. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    13. Benassy-Quere, Agnes & Mignon, Valerie & Penot, Alexis, 2007. "China and the relationship between the oil price and the dollar," Energy Policy, Elsevier, vol. 35(11), pages 5795-5805, November.
    14. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    15. Monica Billio & Massimiliano Caporin, 2005. "Multivariate Markov switching dynamic conditional correlation GARCH representations for contagion analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(2), pages 145-161, November.
    16. Cochran, Steven J. & Mansur, Iqbal & Odusami, Babatunde, 2012. "Volatility persistence in metal returns: A FIGARCH approach," Journal of Economics and Business, Elsevier, vol. 64(4), pages 287-305.
    17. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
    18. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    19. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    20. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    21. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    22. Sjaastad, Larry A., 2008. "The price of gold and the exchange rates: Once again," Resources Policy, Elsevier, vol. 33(2), pages 118-124, June.
    23. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    24. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    25. van Amano, Robert A & Norden, Simon, 1998. "Exchange Rates and Oil Prices," Review of International Economics, Wiley Blackwell, vol. 6(4), pages 683-694, November.
    26. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    27. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
    28. L.A. Sjaastad, 1992. "Gold and the Exchange Rates," Economics Discussion / Working Papers 92-05, The University of Western Australia, Department of Economics.
    29. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    30. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2010. "The macroeconomic determinants of volatility in precious metals markets," Resources Policy, Elsevier, vol. 35(2), pages 65-71, June.
    31. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    32. Ciner, Cetin & Gurdgiev, Constantin & Lucey, Brian M., 2013. "Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 202-211.
    33. Roache, Shaun K. & Rossi, Marco, 2010. "The effects of economic news on commodity prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 377-385, August.
    34. Paul Cashin & C John McDermott & Alasdair Scott, 1999. "The myth of co-moving commodity prices," Reserve Bank of New Zealand Discussion Paper Series G99/9, Reserve Bank of New Zealand.
    35. Adrangi, Bahram & Chatrath, Arjun, 2002. "The Dynamics of Palladium and Platinum Prices," Computational Economics, Springer;Society for Computational Economics, vol. 19(2), pages 179-195, April.
    36. Paul Krugman, 1983. "Oil Shocks and Exchange Rate Dynamics," NBER Chapters, in: Exchange Rates and International Macroeconomics, pages 259-284, National Bureau of Economic Research, Inc.
    37. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    38. Sari, Ramazan & Hammoudeh, Shawkat & Soytas, Ugur, 2010. "Dynamics of oil price, precious metal prices, and exchange rate," Energy Economics, Elsevier, vol. 32(2), pages 351-362, March.
    39. Cheung, Yin-Wong & Lai, Kon S, 1993. "Do Gold Market Returns Have Long Memory?," The Financial Review, Eastern Finance Association, vol. 28(2), pages 181-202, May.
    40. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    41. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    42. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    43. Charlot, Philippe & Marimoutou, Vêlayoudom, 2014. "On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree," Energy Economics, Elsevier, vol. 44(C), pages 456-467.
    44. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    45. Deb, Partha & Trivedi, Pravin K & Varangis, Panayotis, 1996. "The Excess Co-movement of Commodity Prices Reconsidered," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 275-291, May-June.
    46. Elder, John & Miao, Hong & Ramchander, Sanjay, 2012. "Impact of macroeconomic news on metal futures," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 51-65.
    47. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    48. Longin, Francois & Solnik, Bruno, 1995. "Is the correlation in international equity returns constant: 1960-1990?," Journal of International Money and Finance, Elsevier, vol. 14(1), pages 3-26, February.
    49. Akgiray, Vedat, et al, 1991. "Conditional Dependence in Precious Metal Prices," The Financial Review, Eastern Finance Association, vol. 26(3), pages 367-386, August.
    50. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    51. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    52. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    53. Dieter Hess & He Huang & Alexandra Niessen, 2008. "How do commodity futures respond to macroeconomic news?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 22(2), pages 127-146, June.
    54. Plourde, André & Watkins, G. C., 1998. "Crude oil prices between 1985 and 1994: how volatile in relation to other commodities?," Resource and Energy Economics, Elsevier, vol. 20(3), pages 245-262, September.
    55. Kofman, Paul & Koedijk, Kees & Campbell, Rachel, 2002. "Increased Correlation in Bear markets: A Downside Risk Perspective," CEPR Discussion Papers 3172, C.E.P.R. Discussion Papers.
    56. Virginie Coudert & Valérie Mignon & Alexis Penot, 2008. "Oil Price and the Dollar," Post-Print halshs-00353404, HAL.
    57. Adrian W. Throop, 1993. "A generalized uncovered interest parity model of exchange rates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-16.
    58. Jun Cai & Yan‐Leung Cheung & Michael C. S. Wong, 2001. "What moves the gold market?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 257-278, March.
    59. Chen, Mei-Hsiu, 2010. "Understanding world metals prices--Returns, volatility and diversification," Resources Policy, Elsevier, vol. 35(3), pages 127-140, September.
    60. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    61. Christie-David, Rohan & Chaudhry, Mukesh & Koch, Timothy W., 2000. "Do macroeconomics news releases affect gold and silver prices?," Journal of Economics and Business, Elsevier, vol. 52(5), pages 405-421.
    62. Hess, Dieter E. & Huang, He & Niessen-Ruenzi, Alexandra, 2008. "How do commodity futures respond to macroeconomic news?," CFR Working Papers 08-03, University of Cologne, Centre for Financial Research (CFR).
    63. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    2. Shahzad, Syed Jawad Hussain & Rehman, Mobeen Ur & Jammazi, Rania, 2019. "Spillovers from oil to precious metals: Quantile approaches," Resources Policy, Elsevier, vol. 61(C), pages 508-521.
    3. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    4. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    5. Charlot, Philippe & Darné, Olivier & Moussa, Zakaria, 2016. "Commodity returns co-movements: Fundamentals or “style” effect?," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 130-160.
    6. O'Connor, Fergal A. & Lucey, Brian M. & Batten, Jonathan A. & Baur, Dirk G., 2015. "The financial economics of gold — A survey," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 186-205.
    7. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    8. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    9. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    10. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    11. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    12. Aikins Abakah, Emmanuel Joel & Gil-Alana, Luis A. & Tripathy, Trilochan, 2022. "Stochastic structure of metal prices: Evidence from fractional integration non-linearities and breaks," Resources Policy, Elsevier, vol. 78(C).
    13. Umar, Zaghum & Nasreen, Samia & Solarin, Sakiru Adebola & Tiwari, Aviral Kumar, 2019. "Exploring the time and frequency domain connectedness of oil prices and metal prices," Resources Policy, Elsevier, vol. 64(C).
    14. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    15. Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
    16. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Semeyutin, Artur & Downing, Gareth, 2022. "Co-jumps in the U.S. interest rates and precious metals markets and their implications for investors," International Review of Financial Analysis, Elsevier, vol. 81(C).
    18. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    19. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.

    More about this item

    Keywords

    Multivariate GARCH; Dynamic correlations; Regime switching; Hidden Markov Decision Tree;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G1 - Financial Economics - - General Financial Markets
    • G0 - Financial Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:44:y:2014:i:c:p:456-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.