[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v47y2015icp168-177.html
   My bibliography  Save this article

Fossil fuel producing economies have greater potential for industrial interfuel substitution

Author

Listed:
  • Steinbuks, Jevgenijs
  • Narayanan, Badri G.
Abstract
This study analyzes industrial interfuel substitution in an international context using a large unbalanced panel dataset of 63 countries. We find that compared to other countries fossil fuel producing economies have higher short-term interfuel substitution elasticities. This difference increases further in the long run as fossil fuel producing countries have a considerably longer adjustment of their fuel-using capital stock. These results imply lower economic cost for policies aimed at climate abatement and more efficient utilization of energy resources in energy-intensive economies.

Suggested Citation

  • Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
  • Handle: RePEc:eee:eneeco:v:47:y:2015:i:c:p:168-177
    DOI: 10.1016/j.eneco.2014.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314002680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    2. Brannlund, Runar & Lundgren, Tommy, 2004. "A dynamic analysis of interfuel substitution for Swedish heating plants," Energy Economics, Elsevier, vol. 26(6), pages 961-976, November.
    3. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
    4. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    5. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    6. Patricia Renou-Maissant, 1999. "Interfuel Competition in the Industrial Sector of Seven OECD Countries," Post-Print hal-02562575, HAL.
    7. Jean-Marc Burniaux & Jean Château, 2011. "Mitigation Potential of Removing Fossil Fuel Subsidies: A General Equilibrium Assessment," OECD Economics Department Working Papers 853, OECD Publishing.
    8. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    9. Hall, V. B., 1986. "Major OECD country industrial sector interfuel substitution estimates, 1960-1979," Energy Economics, Elsevier, vol. 8(2), pages 74-89, April.
    10. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 340-356.
    11. Agostini, Paola & Botteon, Michele & Carraro, Carlo, 1992. "A carbon tax to reduce CO2 emissions in Europe," Energy Economics, Elsevier, vol. 14(4), pages 279-290, October.
    12. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    13. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    14. Considine, Timothy J, 1990. "Symmetry Constraints and Variable Returns to Scale in Logit Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(3), pages 347-353, July.
    15. Son H. Kim, Jae Edmonds, Josh Lurz, Steven J. Smith, and Marshall Wise, 2006. "The objECTS Framework for integrated Assessment: Hybrid Modeling of Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 63-92.
    16. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    17. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    18. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    19. Serletis, Apostolos & Shahmoradi, Asghar, 2008. "Semi-nonparametric estimates of interfuel substitution in U.S. energy demand," Energy Economics, Elsevier, vol. 30(5), pages 2123-2133, September.
    20. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "A World Induced Technical Change Hybrid Model," The Energy Journal, , vol. 27(2_suppl), pages 13-37, June.
    21. Edward J. Balistreri & Ayed Al-Qahtani & Carol A. Dahl, 2010. "Oil and Petroleum Product Armington Elasticities: A New-Geography-of-Trade Approach to Estimation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 167-180.
    22. Baltagi, Badi H & Griffin, James M, 1988. "A General Index of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 20-41, February.
    23. Apostolos Serletis, 2012. "International Evidence on Sectoral Interfuel Substitution," World Scientific Book Chapters, in: Interfuel Substitution, chapter 3, pages 37-65, World Scientific Publishing Co. Pte. Ltd..
    24. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
    25. Welsch, Heinz, 2008. "Armington elasticities for energy policy modeling: Evidence from four European countries," Energy Economics, Elsevier, vol. 30(5), pages 2252-2264, September.
    26. McDougall, Robert & Alla Golub, 2007. "GTAP-E: A Revised Energy-Environmental Version of the GTAP Model," GTAP Research Memoranda 2959, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    27. Jean-Marc Burniaux & Jean Château, 2008. "An Overview of the OECD ENV-Linkages Model," OECD Economics Department Working Papers 653, OECD Publishing.
    28. Henry D. Jacoby & Ian Sue Wing, 1999. "Adjustment Time, Capital Malleability and Policy Cost," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 73-92.
    29. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    30. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    31. Considine, Timothy J., 1989. "Separability, functional form and regulatory policy in models of interfuel substitution," Energy Economics, Elsevier, vol. 11(2), pages 82-94, April.
    32. Steinbuks, Jevgenijs & Badri Narayanan, 2013. "Fossil Fuel Producing Economies have Greater Potential for Interfuel Substitution," GTAP Working Papers 4220, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    33. Chavas, Jean-Paul & Segerson, Kathleen, 1986. "Singularity and Auotregressive Disturbances in Linear Logit Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(2), pages 161-169, April.
    34. Renou-Maissant, Patricia, 1999. "Interfuel competition in the industrial sector of seven OECD countries," Energy Policy, Elsevier, vol. 27(2), pages 99-110, February.
    35. Pindyck, Robert S & Rotemberg, Julio J, 1983. "Dynamic Factor Demands and the Effects of Energy Price Shocks," American Economic Review, American Economic Association, vol. 73(5), pages 1066-1079, December.
    36. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    37. Considine, Timothy J & Mount, Timothy D, 1984. "The Use of Linear Logit Models for Dynamic Input Demand Systems," The Review of Economics and Statistics, MIT Press, vol. 66(3), pages 434-443, August.
    38. Jones, Clifton T, 1995. "A Dynamic Analysis of Interfuel Substitution in U.S. Industrial Energy Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 459-465, October.
    39. George E. Battese, 1997. "A Note On The Estimation Of Cobb‐Douglas Production Functions When Some Explanatory Variables Have Zero Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 250-252, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Böhringer & Jared C. Carbone & Thomas F. Rutherford, 2018. "Embodied Carbon Tariffs," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(1), pages 183-210, January.
    2. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    3. Suh, Dong Hee, 2016. "Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach," Energy, Elsevier, vol. 102(C), pages 24-30.
    4. Zhang, Cheng & Zhou, Xinxin & Zhou, Bo & Zhao, Ziwei, 2022. "Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics," China Economic Review, Elsevier, vol. 73(C).
    5. Mr. Kangni R Kpodar & Ms. Stefania Fabrizio & Kodjovi M. Eklou, 2019. "Export Competitiveness - Fuel Price Nexus in Developing Countries: Real or False Concern?," IMF Working Papers 2019/025, International Monetary Fund.
    6. Agyeman, Stephen Duah & Lin, Boqiang, 2022. "Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries," Renewable Energy, Elsevier, vol. 194(C), pages 378-395.
    7. Eichner, Thomas & Pethig, Rüdiger, 2019. "EU-type carbon regulation and the waterbed effect of green energy promotion," Energy Economics, Elsevier, vol. 80(C), pages 656-679.
    8. Sinha, Apra & Kumar, Abhishek & Gopalakrishnan, Badri Narayanan, 2020. "Environmental Kuznets Curve and Pollution Haven Hypothesis," MPRA Paper 98930, University Library of Munich, Germany.
    9. Christoph Böhringer & Florian Landis & Miguel Angel Tovar Reaños, 2016. "Cost-effectiveness and Incidence of Renewable Energy Promotion in Germany," Working Papers V-390-16, University of Oldenburg, Department of Economics, revised Jul 2016.
    10. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
    11. Christoph Böhringer & Florian Landis & Miguel Angel Tovar Reaños, 2017. "Economic Impacts of Renewable Energy Promotion in Germany," The Energy Journal, , vol. 38(1_suppl), pages 189-210, June.
    12. Zhang, Cheng & Wang, Qunwei & Shi, Dan & Li, Pengfei & Cai, Wanhuan, 2016. "Scenario-based potential effects of carbon trading in China: An integrated approach," Applied Energy, Elsevier, vol. 182(C), pages 177-190.
    13. Shenghao Feng & Keyu Zhang & Xiujian Peng, 2021. "Elasticity of Substitution Between Electricity and Non-Electric Energy in the Context of Carbon Neutrality in China," Centre of Policy Studies/IMPACT Centre Working Papers g-323, Victoria University, Centre of Policy Studies/IMPACT Centre.
    14. Christoph Böhringer, Florian Landis, and Miguel Angel Tovar Reaños, 2017. "Economic Impacts of Renewable Energy Production in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    15. Liu, Weisheng & Lin, Boqiang, 2021. "Electrification of rails in China: Its impact on energy conservation and emission reduction," Energy, Elsevier, vol. 226(C).
    16. Dong Hee Suh & Charles B. Moss, 2016. "Dynamic interfeed substitution: implications for incorporating ethanol byproducts into feedlot rations," Applied Economics, Taylor & Francis Journals, vol. 48(20), pages 1893-1901, April.
    17. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
    3. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    4. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
    5. Timothy J. Considine & Edward J. M. Manderson, 2013. "The Cost of Solar-Centric Renewable Portfolio Standards," Economics Discussion Paper Series 1323, Economics, The University of Manchester.
    6. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
    7. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    8. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
    9. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
    10. Beckman, Jayson & Hertel, Thomas & Tyner, Wallace, 2011. "Validating energy-oriented CGE models," Energy Economics, Elsevier, vol. 33(5), pages 799-806, September.
    11. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
    12. Spierdijk, Laura & Shaffer, Sherrill & Considine, Tim, 2017. "How do banks adjust to changing input prices? A dynamic analysis of U.S. commercial banks before and after the crisis," Journal of Banking & Finance, Elsevier, vol. 85(C), pages 1-14.
    13. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    14. Dixon, Peter B. & Rimmer, Maureen T., 2009. "Simulating the U.S. recession," Conference papers 331862, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
    16. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    17. Nurul Hossain, A.K.M. & Serletis, Apostolos, 2017. "A century of interfuel substitution," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 28-42.
    18. Apostolos Serletis, 2012. "Interfuel Substitution in the United States," World Scientific Book Chapters, in: Interfuel Substitution, chapter 2, pages 11-35, World Scientific Publishing Co. Pte. Ltd..
    19. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 340-356.
    20. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.

    More about this item

    Keywords

    Dynamic linear logit; Fossil fuel production; Industrial energy demand; International interfuel substitution;
    All these keywords.

    JEL classification:

    • L71 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Hydrocarbon Fuels
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:47:y:2015:i:c:p:168-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.