[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v32y2008i10p3275-3293.html
   My bibliography  Save this article

Q-learning agents in a Cournot oligopoly model

Author

Listed:
  • Waltman, Ludo
  • Kaymak, Uzay
Abstract
No abstract is available for this item.

Suggested Citation

  • Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
  • Handle: RePEc:eee:dyncon:v:32:y:2008:i:10:p:3275-3293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(08)00018-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarin, Rajiv & Vahid, Farshid, 2001. "Predicting How People Play Games: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 34(1), pages 104-122, January.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    4. Huck, Steffen & Normann, Hans-Theo & Oechssler, Jorg, 2004. "Two are few and four are many: number effects in experimental oligopolies," Journal of Economic Behavior & Organization, Elsevier, vol. 53(4), pages 435-446, April.
    5. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    6. Kirman, Alan P. & Vriend, Nicolaas J., 2001. "Evolving market structure: An ACE model of price dispersion and loyalty," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 459-502, March.
    7. Droste, Edward & Hommes, Cars & Tuinstra, Jan, 2002. "Endogenous fluctuations under evolutionary pressure in Cournot competition," Games and Economic Behavior, Elsevier, vol. 40(2), pages 232-269, August.
    8. Alos-Ferrer, Carlos, 2004. "Cournot versus Walras in dynamic oligopolies with memory," International Journal of Industrial Organization, Elsevier, vol. 22(2), pages 193-217, February.
    9. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    10. Mookherjee, Dilip & Sopher, Barry, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Games and Economic Behavior, Elsevier, vol. 19(1), pages 97-132, April.
    11. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    12. Oechssler, Jorg, 2002. "Cooperation as a result of learning with aspiration levels," Journal of Economic Behavior & Organization, Elsevier, vol. 49(3), pages 405-409, November.
    13. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    14. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    15. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    16. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    17. Fernando Vega-Redondo, 1997. "The Evolution of Walrasian Behavior," Econometrica, Econometric Society, vol. 65(2), pages 375-384, March.
    18. Steffen Huck & Hans-Theo Normann & Joerg Oechssler, 2004. "Through Trial and Error to Collusion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(1), pages 205-224, February.
    19. Hofbauer, Josef & Sandholm, William H., 2007. "Evolution in games with randomly disturbed payoffs," Journal of Economic Theory, Elsevier, vol. 132(1), pages 47-69, January.
    20. Waltman, L. & Kaymak, U., 2006. "A Theoretical Analysis of Cooperative Behavior in Multi-Agent Q-learning," ERIM Report Series Research in Management ERS-2006-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    21. Bell, Ann Maria, 2001. "Reinforcement Learning Rules in a Repeated Game," Computational Economics, Springer;Society for Computational Economics, vol. 18(1), pages 89-110, August.
    22. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    23. Dixon, Huw David, 2000. "Keeping up with the Joneses: competition and the evolution of collusion," Journal of Economic Behavior & Organization, Elsevier, vol. 43(2), pages 223-238, October.
    24. Brenner, Thomas, 2006. "Agent Learning Representation: Advice on Modelling Economic Learning," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 18, pages 895-947, Elsevier.
    25. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    26. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    27. Sarin, Rajiv & Vahid, Farshid, 1999. "Payoff Assessments without Probabilities: A Simple Dynamic Model of Choice," Games and Economic Behavior, Elsevier, vol. 28(2), pages 294-309, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    2. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    3. Xie, Erhao, 2021. "Empirical properties and identification of adaptive learning models in behavioral game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 798-821.
    4. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    5. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    6. Schuster, Stephan, 2012. "Applications in Agent-Based Computational Economics," MPRA Paper 47201, University Library of Munich, Germany.
    7. Hanaki, Nobuyuki & Ishikawa, Ryuichiro & Akiyama, Eizo, 2009. "Learning games," Journal of Economic Dynamics and Control, Elsevier, vol. 33(10), pages 1739-1756, October.
    8. Anufriev, Mikhail & Kopányi, Dávid, 2018. "Oligopoly game: Price makers meet price takers," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 84-103.
    9. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    10. Arifovic, Jasmina & Karaivanov, Alexander, 2010. "Learning by doing vs. learning from others in a principal-agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1967-1992, October.
    11. Dürsch, Peter & Kolb, Albert & Oechssler, Jörg & Schipper, Burkhard C., 2005. "Rage Against the Machines: How Subjects Learn to Play Against Computers," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 63, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    12. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    13. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    14. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    15. Shu-Heng Chen & Bin-Tzong Chie & Ying-Fang Kao & Ragupathy Venkatachalam, 2019. "Agent-Based Modeling of a Non-tâtonnement Process for the Scarf Economy: The Role of Learning," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 305-341, June.
    16. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    17. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, September.
    18. Camerer, Colin F. & Ho, Teck-Hua & Chong, Juin-Kuan, 2002. "Sophisticated Experience-Weighted Attraction Learning and Strategic Teaching in Repeated Games," Journal of Economic Theory, Elsevier, vol. 104(1), pages 137-188, May.
    19. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    20. Pangallo, Marco & Sanders, James B.T. & Galla, Tobias & Farmer, J. Doyne, 2022. "Towards a taxonomy of learning dynamics in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 1-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:32:y:2008:i:10:p:3275-3293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.