[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v370y2024ics0306261924009358.html
   My bibliography  Save this article

Electric vehicle charging stations' installing strategies: Considering government subsidies

Author

Listed:
  • Feng, Jian
  • Yao, Yifan
  • Liu, Zhenfeng
  • Liu, Zhenling
Abstract
To address the “chicken-and-egg” dilemma in the electric vehicle (EV) market, the government intervenes by offering EV purchase subsidy to consumers and charging station construction subsidy to installers. Different from previous studies, this study investigates the effects of different types of government subsidies, including only consumer subsidies, only station subsidies, and a combination of above both subsidies, on EV demand and the charging station construction scale. In addition, we model a Stackelberg game between the government and two installers (an EV manufacturer and a charging platform). This study also differs from previous works by considering two installers instead of only one. Results indicate that the station subsidy is more conducive to EV demand than the consumer subsidy in the case of insufficient charging stations. Although the combination of both subsidies demonstrates the most significant effect on the charging station construction scale among all subsidy structures, it does not lead to an optimal ratio of EVs to charging stations (E2C ratio). Whereas only the station subsidy makes E2C ratio reach the lowest. Notably, both installers benefit more from the consumer subsidy when charging stations achieve the scale effect (β ≥ 0.6), while they gain more profit from the station subsidy when charging stations are insufficient (0 < β < 0.6). Moreover, we examine the effects of equal and different amount of station subsidies given to both installers. Interestingly, providing different amounts of station subsidies to two installers results in higher EV demand and a larger scale of charging station construction than those offering equal subsidies to both. Our outcomes also show that, compared with subsidizing the manufacturer to install charging stations, more station subsidy given to the platform can arouse its greater social responsibility and increase EV demand and the charging station scale. This study not only guides enterprise managers in decisions related to charging station installation but also offers nuanced policy recommendations for the government regarding subsidy structures.

Suggested Citation

  • Feng, Jian & Yao, Yifan & Liu, Zhenfeng & Liu, Zhenling, 2024. "Electric vehicle charging stations' installing strategies: Considering government subsidies," Applied Energy, Elsevier, vol. 370(C).
  • Handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009358
    DOI: 10.1016/j.apenergy.2024.123552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    2. Nian, Victor & Hari, M.P. & Yuan, Jun, 2019. "A new business model for encouraging the adoption of electric vehicles in the absence of policy support," Applied Energy, Elsevier, vol. 235(C), pages 1106-1117.
    3. Ye, Fei & Ni, Debing & Li, Kevin W., 2021. "Competition between manufacturers and sharing economy platforms: An owner base and sharing utility perspective," International Journal of Production Economics, Elsevier, vol. 234(C).
    4. Li, Yaoming & Zhang, Qi & Liu, Boyu & McLellan, Benjamin & Gao, Yuan & Tang, Yanyan, 2018. "Substitution effect of New-Energy Vehicle Credit Program and Corporate Average Fuel Consumption Regulation for Green-car Subsidy," Energy, Elsevier, vol. 152(C), pages 223-236.
    5. Luo, Chunlin & Leng, Mingming & Huang, Jian & Liang, Liping, 2014. "Supply chain analysis under a price-discount incentive scheme for electric vehicles," European Journal of Operational Research, Elsevier, vol. 235(1), pages 329-333.
    6. Srivastava, Abhishek & Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mateen, Arqum & Narayanamurthy, Gopalakrishnan, 2022. "Design and selection of government policies for electric vehicles adoption: A global perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Ron Adner & Jianqing Chen & Feng Zhu, 2020. "Frenemies in Platform Markets: Heterogeneous Profit Foci as Drivers of Compatibility Decisions," Management Science, INFORMS, vol. 66(6), pages 2432-2451, June.
    8. Lingling Shi & Suresh P. Sethi & Metin Çakanyıldırım, 2022. "Promoting electric vehicles: Reducing charging inconvenience and price via station and consumer subsidies," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4333-4350, December.
    9. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    10. Michael K. Lim & Ho-Yin Mak & Ying Rong, 2015. "Toward Mass Adoption of Electric Vehicles: Impact of the Range and Resale Anxieties," Manufacturing & Service Operations Management, INFORMS, vol. 17(1), pages 101-119, February.
    11. Li, Kunpeng & Wang, Lan, 2023. "Optimal electric vehicle subsidy and pricing decisions with consideration of EV anxiety and EV preference in green and non-green consumers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    12. Graber, Giuseppe & Calderaro, Vito & Mancarella, Pierluigi & Galdi, Vincenzo, 2020. "Two-stage stochastic sizing and packetized energy scheduling of BEV charging stations with quality of service constraints," Applied Energy, Elsevier, vol. 260(C).
    13. Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mandal, Prasenjit, 2021. "Promoting electric vehicle adoption: Who should invest in charging infrastructure?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    14. Nie, Yu (Marco) & Ghamami, Mehrnaz & Zockaie, Ali & Xiao, Feng, 2016. "Optimization of incentive polices for plug-in electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 103-123.
    15. Shao, Lulu & Yang, Jun & Zhang, Min, 2017. "Subsidy scheme or price discount scheme? Mass adoption of electric vehicles under different market structures," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1181-1195.
    16. Li, Zhikang & Ma, Chengbin, 2022. "A temporal–spatial charging coordination scheme incorporating probability of EV charging availability," Applied Energy, Elsevier, vol. 325(C).
    17. Ding, Yanyan & Jian, Sisi, 2022. "Strategic collaboration between land owners and charging station operators: Lease or outsource?," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 183-211.
    18. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    19. Gangshu (George) Cai & Yue Dai & Sean X. Zhou, 2012. "Exclusive Channels and Revenue Sharing in a Complementary Goods Market," Marketing Science, INFORMS, vol. 31(1), pages 172-187, January.
    20. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    21. Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
    22. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    23. Maxime C. Cohen & Ruben Lobel & Georgia Perakis, 2016. "The Impact of Demand Uncertainty on Consumer Subsidies for Green Technology Adoption," Management Science, INFORMS, vol. 62(5), pages 1235-1258, May.
    24. Yoo, Seung Ho & Choi, Thomas Y. & Sheu, Jiuh-Biing, 2021. "Electric vehicles and product–service platforms: Now and in future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    25. Schroeder, Andreas & Traber, Thure, 2012. "The economics of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 43(C), pages 136-144.
    26. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pabba Ramesh & Pongiannan Rakkiya Goundar Komarasamy & Narayanamoorthi Rajamanickam & Yahya Z. Alharthi & Ali Elrashidi & Waleed Nureldeen, 2024. "A Comprehensive Review on Control Technique and Socio-Economic Analysis for Sustainable Dynamic Wireless Charging Applications," Sustainability, MDPI, vol. 16(15), pages 1-42, July.
    2. Jia Ke & Dezhao Zhu & Yanjun Wang & Chunxiao Hao & Yan Ding, 2024. "Study on the Development Status and Promotion Strategy of Zero-Emission Commercial Vehicles in China under the Background of the Dual Carbon Target," Sustainability, MDPI, vol. 16(17), pages 1-23, August.
    3. Narayanamoorthi Rajamanickam & Yuvaraja Shanmugam & Rahulkumar Jayaraman & Jan Petrov & Lukas Vavra & Radomir Gono, 2024. "Review of Compensation Topologies Power Converters Coil Structure and Architectures for Dynamic Wireless Charging System for Electric Vehicle," Energies, MDPI, vol. 17(15), pages 1-42, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivastava, Abhishek & Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mateen, Arqum & Narayanamurthy, Gopalakrishnan, 2022. "Design and selection of government policies for electric vehicles adoption: A global perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    2. Li, Kunpeng & Wang, Lan, 2023. "Optimal electric vehicle subsidy and pricing decisions with consideration of EV anxiety and EV preference in green and non-green consumers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    3. Shao, Jing & Jiang, Changmin & Cui, Yinglong & Tang, Yao, 2023. "A game-theoretic model to compare charging infrastructure subsidy and electric vehicle subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    4. Gao, Yongling & Leng, Mingming & Zhang, Yaping & Liang, Liping, 2022. "Incentivizing the adoption of electric vehicles in city logistics: Pricing, driving range, and usage decisions under time window policies," International Journal of Production Economics, Elsevier, vol. 245(C).
    5. Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mandal, Prasenjit, 2021. "Promoting electric vehicle adoption: Who should invest in charging infrastructure?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    6. Fan, Zhi-Ping & Cao, Yue & Huang, Chun-Yong & Li, Yongli, 2020. "Pricing strategies of domestic and imported electric vehicle manufacturers and the design of government subsidy and tariff policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    7. Yoo, Seung Ho & Choi, Thomas Y. & Sheu, Jiuh-Biing, 2021. "Electric vehicles and product–service platforms: Now and in future," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    8. Asgarian, Fariba & Hejazi, Seyed Reza & Khosroshahi, Hossein & Safarzadeh, Soroush, 2024. "Vehicle pricing considering EVs promotion and public transportation investment under governmental policies on sustainable transportation development: The case of Norway," Transport Policy, Elsevier, vol. 153(C), pages 204-221.
    9. Mu Li & Yingqi Liu & Weizhong Yue, 2022. "Evolutionary Game of Actors in China’s Electric Vehicle Charging Infrastructure Industry," Energies, MDPI, vol. 15(23), pages 1-20, November.
    10. Lingling Shi & Suresh P. Sethi & Metin Çakanyıldırım, 2022. "Promoting electric vehicles: Reducing charging inconvenience and price via station and consumer subsidies," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4333-4350, December.
    11. Tang, Juan & Ji, Guan-Qun & Liu, Zhi & Sheu, Jiuh-Biing, 2024. "Electric vehicle battery-charging service and operations managing under different charging station construction modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    12. Yu, Yi & Zhou, Dequn & Zha, Donglan & Wang, Qunwei & Zhu, Qingyuan, 2021. "Optimal production and pricing strategies in auto supply chain when dual credit policy is substituted for subsidy policy," Energy, Elsevier, vol. 226(C).
    13. Ding, Yanyan & Jian, Sisi, 2022. "Strategic collaboration between land owners and charging station operators: Lease or outsource?," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 183-211.
    14. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    15. Liangui Peng & Ying Li & Hui Yu, 2021. "Effects of Dual Credit Policy and Consumer Preferences on Production Decisions in Automobile Supply Chain," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    16. Brozynski, Max T. & Leibowicz, Benjamin D., 2022. "A multi-level optimization model of infrastructure-dependent technology adoption: Overcoming the chicken-and-egg problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 755-770.
    17. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    18. Zhao, Xingrong & Ma, Ye & Shao, Shuai & Ma, Tieju, 2022. "What determines consumers' acceptance of electric vehicles: A survey in Shanghai, China," Energy Economics, Elsevier, vol. 108(C).
    19. Kuppusamy, Saravanan & Magazine, Michael J. & Rao, Uday, 2023. "Impact of downstream emissions cap-and-trade policy on electric vehicle and clean utility adoption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    20. Cheng, Fei & Chen, Tong & Chen, Qiao, 2022. "Cost-reducing strategy or emission-reducing strategy? The choice of low-carbon decisions under price threshold subsidy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.