[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921013805.html
   My bibliography  Save this article

Energy hub-based optimal planning framework for user-level integrated energy systems: Considering synergistic effects under multiple uncertainties

Author

Listed:
  • Li, Chengzhou
  • Wang, Ningling
  • Wang, Zhuo
  • Dou, Xiaoxiao
  • Zhang, Yumeng
  • Yang, Zhiping
  • Maréchal, François
  • Wang, Ligang
  • Yang, Yongping
Abstract
The design of user-level integrated energy systems is challenged by a variety of combinations of energy converters, complex cascade utilization of multiple energy flows, as well as sequential matching between stochastic energy resources and periodic energy demands. These issues can be addressed by an optimal energy-hub based planning framework considering the synergistic effects under multiple uncertainties. The energy hub model is extended to analyze energy-level matching and source–load balance with time-varying coupling factors representing part-load characteristics. The optimization problem is formulated as a bi-level planning model with uncertainties evaluated by a two-stage global sensitivity analysis. The bi-level planning model determines the system structure and component sizing at the upper level and identifies the optimal operation strategy at the lower level by employing piecewise linearization of part-load characteristics of components involved. The global sensitivity analysis reduces model size with the elementary effect method, identifies the most influential uncertain parameters with a variance-based method. A case study in Beijing is demonstrated for the proposed methodology. The results show that the proposed method can effectively plan the integrated energy system considering sequential source–load matching with the rational scheduling strategy of components. The demand-side response influences the system configuration and renewable energy penetration. Integrating the components’ part-load characteristics help avoid the mismatch between the component capacity and energy demand, reducing 6.8% cost compared to the scheme with constant energy efficiency. The three most influential factors identified among 551 uncertain parameters are natural gas price, valley electricity price and nominal efficiency of the gas turbine.

Suggested Citation

  • Li, Chengzhou & Wang, Ningling & Wang, Zhuo & Dou, Xiaoxiao & Zhang, Yumeng & Yang, Zhiping & Maréchal, François & Wang, Ligang & Yang, Yongping, 2022. "Energy hub-based optimal planning framework for user-level integrated energy systems: Considering synergistic effects under multiple uncertainties," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921013805
    DOI: 10.1016/j.apenergy.2021.118099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921013805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Verschelde, Tars & D'haeseleer, William, 2021. "Methodology for a global sensitivity analysis with machine learning on an energy system planning model in the context of thermal networks," Energy, Elsevier, vol. 232(C).
    3. Wang, Yi & Zhang, Ning & Zhuo, Zhenyu & Kang, Chongqing & Kirschen, Daniel, 2018. "Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch," Applied Energy, Elsevier, vol. 210(C), pages 1141-1150.
    4. V, Arun Kumar & Verma, Ashu & Talwar, Rajbans, 2020. "Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities," Energy, Elsevier, vol. 208(C).
    5. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    6. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    7. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    8. Voll, Philip & Klaffke, Carsten & Hennen, Maike & Bardow, André, 2013. "Automated superstructure-based synthesis and optimization of distributed energy supply systems," Energy, Elsevier, vol. 50(C), pages 374-388.
    9. Gazijahani, Farhad Samadi & Salehi, Javad, 2018. "Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach," Energy, Elsevier, vol. 161(C), pages 999-1015.
    10. Fan, Vivienne Hui & Dong, Zhaoyang & Meng, Ke, 2020. "Integrated distribution expansion planning considering stochastic renewable energy resources and electric vehicles," Applied Energy, Elsevier, vol. 278(C).
    11. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    12. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Matrix modelling of small-scale trigeneration systems and application to operational optimization," Energy, Elsevier, vol. 34(3), pages 261-273.
    13. Pan, Guangsheng & Gu, Wei & Wu, Zhi & Lu, Yuping & Lu, Shuai, 2019. "Optimal design and operation of multi-energy system with load aggregator considering nodal energy prices," Applied Energy, Elsevier, vol. 239(C), pages 280-295.
    14. Li, Peng & Wang, Zixuan & Liu, Haitao & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "Bi-level optimal configuration strategy of community integrated energy system with coordinated planning and operation," Energy, Elsevier, vol. 236(C).
    15. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    16. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Hosseinzadeh, Mehdi & Yousefi, Hossein & Khorasani, Sasan Torabzadeh, 2018. "Optimal management of energy hubs and smart energy hubs – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 33-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Lv, Hang, 2023. "Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters," Energy, Elsevier, vol. 277(C).
    2. Hua, Zhihao & Li, Jiayong & Zhou, Bin & Or, Siu Wing & Chan, Ka Wing & Meng, Yunfan, 2022. "Game-theoretic multi-energy trading framework for strategic biogas-solar renewable energy provider with heterogeneous consumers," Energy, Elsevier, vol. 260(C).
    3. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    4. Chen, Minghao & Sun, Yi & Xie, Zhiyuan & Lin, Nvgui & Wu, Peng, 2023. "An efficient and privacy-preserving algorithm for multiple energy hubs scheduling with federated and matching deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    5. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2022. "Multi-aspect efficiency measurement of multi-objective energy planning model dealing with uncertainties," Applied Energy, Elsevier, vol. 313(C).
    6. Gan, Wei & Yan, Mingyu & Wen, Jianfeng & Yao, Wei & Zhang, Jing, 2022. "A low-carbon planning method for joint regional-district multi-energy systems: From the perspective of privacy protection," Applied Energy, Elsevier, vol. 311(C).
    7. Yajing Hu & Jing Liu & Xiandong Xu, 2022. "Dynamic Interactions between Local Energy Systems Coupled by Power and Gas Distribution Networks," Energies, MDPI, vol. 15(22), pages 1-15, November.
    8. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    9. Tan, Jinjing & Pan, Weiqi & Li, Yang & Hu, Haoming & Zhang, Can, 2023. "Energy-sharing operation strategy of multi-district integrated energy systems considering carbon and renewable energy certificate trading," Applied Energy, Elsevier, vol. 339(C).
    10. Wu, Wencong & Du, Yuji & Qian, Huijin & Fan, Haibin & Jiang, Zhu & Huang, Shifang & Zhang, Xiaosong, 2024. "Industrial Park low-carbon energy system planning framework: Heat pump based energy conjugation between industry and buildings," Applied Energy, Elsevier, vol. 369(C).
    11. Friebe, Maximilian & Karasu, Arda & Kriegel, Martin, 2023. "Methodology to compare and optimize district heating and decentralized heat supply for energy transformation on a municipality level," Energy, Elsevier, vol. 282(C).
    12. Huang, Yu & Jin, Mingyue & Xie, Jiale & Peng, Yanjian & Zhong, Junjie, 2024. "Dynamic Bayesian game optimization method for multi-energy hub systems with incomplete load information," Energy, Elsevier, vol. 301(C).
    13. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2023. "A communication-efficient coalition graph game-based framework for electricity and carbon trading in networked energy hubs," Applied Energy, Elsevier, vol. 329(C).
    14. Qiao, Yiyang & Hu, Fan & Xiong, Wen & Guo, Zihao & Zhou, Xiaoguang & Li, Yajun, 2023. "Multi-objective optimization of integrated energy system considering installation configuration," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Chun & Wang, Linqing & Han, Zhongyang & Zhao, Jun & Liu, Quanli, 2021. "Weighted directed graph based matrix modeling of integrated energy systems," Energy, Elsevier, vol. 214(C).
    2. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).
    3. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    4. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    6. Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
    7. Kiani-Moghaddam, Mohammad & Soltani, Mohsen N. & Kalogirou, Soteris A. & Mahian, Omid & Arabkoohsar, Ahmad, 2023. "A review of neighborhood level multi-carrier energy hubs—uncertainty and problem-solving process," Energy, Elsevier, vol. 281(C).
    8. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
    9. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
    10. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    11. Ramos-Teodoro, Jerónimo & Rodríguez, Francisco & Berenguel, Manuel & Torres, José Luis, 2018. "Heterogeneous resource management in energy hubs with self-consumption: Contributions and application example," Applied Energy, Elsevier, vol. 229(C), pages 537-550.
    12. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    13. Wu, Min & Xu, Jiazhu & Zeng, Linjun & Li, Chang & Liu, Yuxing & Yi, Yuqin & Wen, Ming & Jiang, Zhuohan, 2022. "Two-stage robust optimization model for park integrated energy system based on dynamic programming," Applied Energy, Elsevier, vol. 308(C).
    14. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    15. Pinto, Edwin S. & Gronier, Timothé & Franquet, Erwin & Serra, Luis M., 2023. "Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings," Energy, Elsevier, vol. 272(C).
    16. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Leenders, Ludger & Bahl, Björn & Hennen, Maike & Bardow, André, 2019. "Coordinating scheduling of production and utility system using a Stackelberg game," Energy, Elsevier, vol. 175(C), pages 1283-1295.
    18. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    19. Qiao, Yiyang & Hu, Fan & Xiong, Wen & Guo, Zihao & Zhou, Xiaoguang & Li, Yajun, 2023. "Multi-objective optimization of integrated energy system considering installation configuration," Energy, Elsevier, vol. 263(PC).
    20. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921013805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.