[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp124-134.html
   My bibliography  Save this article

Effect of corn ethanol production on Conservation Reserve Program acres in the US

Author

Listed:
  • Chen, Xiaoguang
  • Khanna, Madhu
Abstract
The increase in corn ethanol production has raised concerns about its indirect impacts on the expansion of cropland and implications for the environment and continues to be a controversial issue. In particular, land enrolled in the Conservation Reserve Program (CRP) declined by 7.2 million acres between 2007 and 2012 while corn ethanol production more than doubled. However, the extent to which this decline in CRP acres can be causally attributed to increased ethanol production is yet to be determined. Using a dynamic, partial equilibrium economic model for the US agricultural sector we find that doubling of corn ethanol production over the 2007–2012 period (holding all else constant) led to the conversion of 3.2 million acres of unused cropland, including 1 million acres in CRP, to crop production. While substantial in magnitude, we find that these land use changes due to biofuel production accounted for only 16% and 13% of the total reduction in unused cropland and in CRP acres, respectively, that occurred over the 2007–2012 period. We also find that the land use change per million gallons of corn ethanol has declined non-linearly over time from 453 acres to 112 acres over the 2007–2012 period.

Suggested Citation

  • Chen, Xiaoguang & Khanna, Madhu, 2018. "Effect of corn ethanol production on Conservation Reserve Program acres in the US," Applied Energy, Elsevier, vol. 225(C), pages 124-134.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:124-134
    DOI: 10.1016/j.apenergy.2018.04.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191830669X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanlaya J. Barr & Bruce A. Babcock & Miguel A. Carriquiry & Andre M. Nassar & Leila Harfuch, 2011. "Agricultural Land Elasticities in the United States and Brazil," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 449-462.
    2. Wise, Marshall & Dooley, James & Luckow, Patrick & Calvin, Katherine & Kyle, Page, 2014. "Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century," Applied Energy, Elsevier, vol. 114(C), pages 763-773.
    3. Xiaoguang Chen & Hayri Önal, 2012. "Modeling Agricultural Supply Response Using Mathematical Programming and Crop Mixes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 674-686.
    4. Madhu Khanna & David Zilberman, 2012. "Modeling The Land-Use And Greenhouse-Gas Implications Of Biofuels," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-15.
    5. Swinton, Scott M. & Babcock, Bruce A. & James, Laura K. & Bandaru, Varaprasad, 2011. "Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited," Energy Policy, Elsevier, vol. 39(9), pages 5254-5258, September.
    6. Madhu Khanna & Xiaoguang Chen & Haixiao Huang & Hayri Onal, 2011. "Supply of Cellulosic Biofuel Feedstocks and Regional Production Pattern," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 473-480.
    7. Chang, Hung-Hao & Chen, Yu-Hui, 2011. "Are participators in the land retirement program likely to grow energy crops?," Applied Energy, Elsevier, vol. 88(9), pages 3183-3188.
    8. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    9. Leal, Manoel Regis L.V. & Horta Nogueira, Luiz A. & Cortez, Luis A.B., 2013. "Land demand for ethanol production," Applied Energy, Elsevier, vol. 102(C), pages 266-271.
    10. Barr, Kanlaya Jintanakul, 2011. "Agricultural Land Elasticities in the United States and Brazil," Staff General Research Papers Archive 34893, Iowa State University, Department of Economics.
    11. Bruce A. McCarl, 1982. "Cropping Activities in Agricultural Sector Models: A Methodological Proposal," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(4), pages 768-772.
    12. Zhong, Jia & Yu, T. Edward & Clark, Christopher D. & English, Burton C. & Larson, James A. & Cheng, Chu-Lin, 2018. "Effect of land use change for bioenergy production on feedstock cost and water quality," Applied Energy, Elsevier, vol. 210(C), pages 580-590.
    13. Ali, Tariq & Huang, Jikun & Yang, Jun, 2013. "Impact assessment of global and national biofuels developments on agriculture in Pakistan," Applied Energy, Elsevier, vol. 104(C), pages 466-474.
    14. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    15. Glithero, N.J. & Wilson, P. & Ramsden, S.J., 2015. "Optimal combinable and dedicated energy crop scenarios for marginal land," Applied Energy, Elsevier, vol. 147(C), pages 82-91.
    16. Swinton, Scott & Babcock, Bruce A. & James, Laura K. & Bandaru, Varaprasad, 2011. "Higher U.S. Crop Prices Trigger Little Area Expansion So Marginal Land for Biofuels is Limited," Staff General Research Papers Archive 34897, Iowa State University, Department of Economics.
    17. Tara W. Hudiburg & WeiWei Wang & Madhu Khanna & Stephen P. Long & Puneet Dwivedi & William J. Parton & Melannie Hartman & Evan H. DeLucia, 2016. "Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    18. Madhu Khanna & Christine L. Crago, 2012. "Measuring Indirect Land Use Change with Biofuels: Implications for Policy," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 161-184, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spawn-Lee, Seth A. & Lark, Tyler J. & Gibbs, Holly & Houghton, Richard A. & Kucharik, Christopher J & Malins, Chris & Pelton, Rylie & Robertson, G. Philip, 2021. "Refuting recent claims of an improved carbon intensity of U.S. corn ethanol," EcoEvoRxiv cxhz5, Center for Open Science.
    2. Chen, Bin & Xu, Haoran & Tan, Peng & Zhang, Yuan & Xu, Xiaoming & Cai, Weizi & Chen, Meina & Ni, Meng, 2019. "Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells," Applied Energy, Elsevier, vol. 237(C), pages 476-486.
    3. Jacqueline Amaya & Emily Bednarski & Allison Guccione & Zachary Raniszeski & Megan Tierney & Samantha Trajcevski & Isabella Waite & Robert J. Brecha, 2024. "The Food, Energy, and Water Nexus through the Lens of Electric Vehicle Adoption and Ethanol Consumption in the United States," Sustainability, MDPI, vol. 16(13), pages 1-19, June.
    4. Johnson, David R. & Geldner, Nathan B. & Liu, Jing & Baldos, Uris Lantz & Hertel, Thomas, 2023. "Reducing US biofuels requirements mitigates short-term impacts of global population and income growth on agricultural environmental outcomes," Energy Policy, Elsevier, vol. 175(C).
    5. Han, Guang & Niles, Meredith T., 2023. "An adoption spectrum for sustainable agriculture practices: A new framework applied to cover crop adoption," Agricultural Systems, Elsevier, vol. 212(C).
    6. Le, Hoanh & Gálvez-Soriano, Oscar, 2024. "Impact Of The Renewable Fuel Standard On Midwest Farmland Values," 2024 Annual Meeting, July 28-30, New Orleans, LA 343763, Agricultural and Applied Economics Association.
    7. Jennifer Ifft & Deepak Rajagopal & Ryan Weldzuis, 2019. "Ethanol Plant Location and Land Use: A Case Study of CRP and the Ethanol Mandate," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(1), pages 37-55, March.
    8. Mary Ann Cunningham, 2022. "Climate Change, Agriculture, and Biodiversity: How Does Shifting Agriculture Affect Habitat Availability?," Land, MDPI, vol. 11(8), pages 1-13, August.
    9. Li, Bangxin & Irvine, John T.S. & Ni, Jiupai & Ni, Chengsheng, 2022. "High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode," Applied Energy, Elsevier, vol. 306(PB).
    10. Austin, K.G. & Jones, J.P.H. & Clark, C.M., 2022. "A review of domestic land use change attributable to U.S. biofuel policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer Ifft & Deepak Rajagopal & Ryan Weldzuis, 2019. "Ethanol Plant Location and Land Use: A Case Study of CRP and the Ethanol Mandate," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(1), pages 37-55, March.
    2. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    3. Ifft, Jennifer & Rajagopal, Deepak & Ryan, Weldzius, 2016. "The effect of the ethanol mandate on the Conservation Reserve Program," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236178, Agricultural and Applied Economics Association.
    4. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    5. Austin, K.G. & Jones, J.P.H. & Clark, C.M., 2022. "A review of domestic land use change attributable to U.S. biofuel policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.
    7. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Chen, Xiaoguang & Khanna, Madhu, 2014. "Indirect Land Use Effects of Corn Ethanol in the U.S: Implications for the Conservation Reserve Program," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170284, Agricultural and Applied Economics Association.
    9. Kauffman, Nathan S. & Hayes, Dermot J., 2013. "The trade-off between bioenergy and emissions with land constraints," Energy Policy, Elsevier, vol. 54(C), pages 300-310.
    10. Khanna, Madhu & Wang, Weiwei & Wang, Michael, 2018. "Assessing the Carbon Neutrality of Biofuel: An Anticipated Baseline Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274450, Agricultural and Applied Economics Association.
    11. Weiwei Wang, 2022. "Agricultural and Forestry Biomass for Meeting the Renewable Fuel Standard: Implications for Land Use and GHG Emissions," Energies, MDPI, vol. 15(23), pages 1-21, November.
    12. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    13. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2017. "Integrated Assessment Models of the Food, Energy, and Water Nexus: A Review and an Outline of Research Needs," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 143-163, October.
    14. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    15. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    16. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    17. Piroli, Giuseppe & Ciaian, Pavel & Kancs, d'Artis, 2012. "Land use change impacts of biofuels: Near-VAR evidence from the US," Ecological Economics, Elsevier, vol. 84(C), pages 98-109.
    18. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    19. Chamberlain, Jim F. & Miller, Shelie A., 2012. "Policy incentives for switchgrass production using valuation of non-market ecosystem services," Energy Policy, Elsevier, vol. 48(C), pages 526-536.
    20. Miroslava Rajcaniova & d'Artis Kancs & Pavel Ciaian, 2014. "Bioenergy and global land-use change," Applied Economics, Taylor & Francis Journals, vol. 46(26), pages 3163-3179, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:124-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.