[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp887-897.html
   My bibliography  Save this article

Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy

Author

Listed:
  • Luo, Yongqiang
  • Zhang, Ling
  • Wu, Jing
  • Liu, Zhongbing
  • Wu, Zhenghong
  • He, Xihua
Abstract
Building integrated photovoltaic thermoelectric (BIPVTE) wall system is highly energy efficient and self-adaptive to the environment. This sophisticated system is supported by the co-work of PV module for solar radiation transformation, air gap for thermal dissipation and thermoelectric radiant panel system (TERP) for active radiant cooling/heating. The purpose of this study is to develop an accurate and fast simulation method of this complex system which could be beneficial for system design, control and optimization for application. The present study upgraded the PV model by considering the variable resistance due to Peltier Effect in thermoelectric module. A new non-uniform time step model was proposed which can provide an improved and more efficient system simulation. The non-uniform time step solution of BIPVTE system was validated by comparing with both uniform time step solution and experimental data. The parametric studies on time step h and superposition number N under uniform time step solution, as well as two linear deviation coefficients dT and dG under non-uniform time step solution, were respectively analyzed. In uniform time step solution, the simulation time step h and parameter N should be properly chosen to balance simulation speed and accuracy. However, in non-uniform time step, numerical investigations demonstrated that simulation accuracy can be kept within an acceptable range even when linear deviation coefficients were large enough. The algorithm can be further accelerated by adopting Gauss-Berntsen-Espelid or Gauess-Kronrod rule in numerical integral calculation. The comparative and case study in this research has shown the validity and robustness of the proposed non-uniform time step model, which could be a useful tool for further work on BIPVTE as well as other building systems.

Suggested Citation

  • Luo, Yongqiang & Zhang, Ling & Wu, Jing & Liu, Zhongbing & Wu, Zhenghong & He, Xihua, 2017. "Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy," Applied Energy, Elsevier, vol. 204(C), pages 887-897.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:887-897
    DOI: 10.1016/j.apenergy.2017.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730243X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Xing & Tian, Zhichao & Chen, Wenqiang & Si, Binghui & Jin, Xing, 2016. "A review on building energy efficient design optimization rom the perspective of architects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 872-884.
    2. Illanes, Rafael & De Francisco, Adolfo & Núñez, Francisco & De Blas, Marian & García, Almudena & Torres, José Luis, 2014. "Dynamic simulation and modelling of stand-alone PV systems by using state equations and numerical integration methods," Applied Energy, Elsevier, vol. 135(C), pages 440-449.
    3. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Xie, Lei, 2016. "Modeling of the surface temperature field of a thermoelectric radiant ceiling panel system," Applied Energy, Elsevier, vol. 162(C), pages 675-686.
    4. Dizqah, Arash M. & Maheri, Alireza & Busawon, Krishna, 2014. "An accurate method for the PV model identification based on a genetic algorithm and the interior-point method," Renewable Energy, Elsevier, vol. 72(C), pages 212-222.
    5. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    6. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    7. Xie, Dong & Wang, Yun & Wang, Hanqing & Mo, Shunquan & Liao, Maili, 2016. "Numerical analysis of temperature non-uniformity and cooling capacity for capillary ceiling radiant cooling panel," Renewable Energy, Elsevier, vol. 87(P3), pages 1154-1161.
    8. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    9. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    10. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    11. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    12. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    13. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    14. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Xie, Lei & Wang, Xiliang & Wu, Jing, 2018. "Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season," Energy, Elsevier, vol. 165(PB), pages 326-342.
    2. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    3. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    4. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    5. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong & He, Xihua, 2017. "Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China," Energy, Elsevier, vol. 140(P1), pages 584-600.
    7. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    8. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    9. Zhu, Li & Zhang, Jiqiang & Li, Qingxiang & Shao, Zebiao & Chen, Mengdong & Yang, Yang & Sun, Yong, 2020. "Comprehensive analysis of heat transfer of double-skin facades integrated high concentration photovoltaic (CPV-DSF)," Renewable Energy, Elsevier, vol. 161(C), pages 635-649.
    10. Zhang, Chong & Gang, Wenjie & Xu, Xinhua & Li, Liao & Wang, Jinbo, 2019. "Modelling, experimental test, and design of an active air permeable wall by utilizing the low-grade exhaust air," Applied Energy, Elsevier, vol. 240(C), pages 730-743.
    11. Yu, Bendong & Yang, Jichun & He, Wei & Qin, Minghui & Zhao, Xudong & Chen, Hongbing, 2019. "The performance analysis of a novel hybrid solar gradient utilization photocatalytic-thermal-catalytic-Trombe wall system," Energy, Elsevier, vol. 174(C), pages 420-435.
    12. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    13. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Su, Xiaosong & Lian, Jinbu & Luo, Yongwei, 2018. "Coupled thermal-electrical-optical analysis of a photovoltaic-blind integrated glazing façade," Applied Energy, Elsevier, vol. 228(C), pages 1870-1886.
    14. Duc Long Luong & Quang Trung Nguyen & Anh Duc Pham & Quynh Chau Truong & Minh Quan Duong, 2020. "Building a Decision-Making Support Framework for Installing Solar Panels on Vertical Glazing Façades of the Building Based on the Life Cycle Assessment and Environmental Benefit Analysis," Energies, MDPI, vol. 13(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    2. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    3. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong, 2018. "Numerical evaluation on energy saving potential of a solar photovoltaic thermoelectric radiant wall system in cooling dominant climates," Energy, Elsevier, vol. 142(C), pages 384-399.
    4. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    5. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong & He, Xihua, 2017. "Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China," Energy, Elsevier, vol. 140(P1), pages 584-600.
    6. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    7. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    9. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    10. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    11. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    12. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    13. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    14. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    15. Chen, Xia & Geyer, Philipp, 2022. "Machine assistance in energy-efficient building design: A predictive framework toward dynamic interaction with human decision-making under uncertainty," Applied Energy, Elsevier, vol. 307(C).
    16. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    17. Liu, Zhongbing & Zhang, Yelin & Zhang, Ling & Luo, Yongqiang & Wu, Zhenghong & Wu, Jing & Yin, Yingde & Hou, Guoqing, 2018. "Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system," Applied Energy, Elsevier, vol. 228(C), pages 1887-1900.
    18. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    19. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    20. Ohlsson, K.E. Anders & Nair, Gireesh & Olofsson, Thomas, 2022. "Uncertainty in model prediction of energy savings in building retrofits: Case of thermal transmittance of windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:887-897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.