[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp828-838.html
   My bibliography  Save this article

Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems

Author

Listed:
  • Romero Rodríguez, Laura
  • Salmerón Lissén, José Manuel
  • Sánchez Ramos, José
  • Rodríguez Jara, Enrique Ángel
  • Álvarez Domínguez, Servando
Abstract
The aim of this paper is to assess the performance of several designs of hybrid systems composed of solar thermal collectors, photovoltaic panels and natural gas internal combustion engines. The software TRNSYS 17 has been used to perform all the calculations and data processing, as well as an optimisation of the tank volumes through an add-in coupled with the GENOPT® software. The study is carried out by analysing the behaviour of the designed systems and the conventional case in five different locations of Spain with diverse climatic characteristics, evaluating the same building in all cases. Regulators, manufacturers and energy service engineers are the most interested in these results.

Suggested Citation

  • Romero Rodríguez, Laura & Salmerón Lissén, José Manuel & Sánchez Ramos, José & Rodríguez Jara, Enrique Ángel & Álvarez Domínguez, Servando, 2016. "Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems," Applied Energy, Elsevier, vol. 165(C), pages 828-838.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:828-838
    DOI: 10.1016/j.apenergy.2015.12.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yamegueu, D. & Azoumah, Y. & Py, X. & Zongo, N., 2011. "Experimental study of electricity generation by Solar PV/diesel hybrid systems without battery storage for off-grid areas," Renewable Energy, Elsevier, vol. 36(6), pages 1780-1787.
    2. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    3. Ghasemi, Abolfazl & Asrari, Arash & Zarif, Mahdi & Abdelwahed, Sherif, 2013. "Techno-economic analysis of stand-alone hybrid photovoltaic–diesel–battery systems for rural electrification in eastern part of Iran—A step toward sustainable rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 456-462.
    4. McHenry, Mark P., 2012. "A technical, economic, and greenhouse gas emission analysis of a homestead-scale grid-connected and stand-alone photovoltaic and diesel systems, against electricity network extension," Renewable Energy, Elsevier, vol. 38(1), pages 126-135.
    5. Kaldellis, John & Zafirakis, Dimitrios & Kavadias, Kosmas & Kondili, Emilia, 2012. "Optimum PV-diesel hybrid systems for remote consumers of the Greek territory," Applied Energy, Elsevier, vol. 97(C), pages 61-67.
    6. Bianchi, M. & De Pascale, A. & Melino, F., 2013. "Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application," Applied Energy, Elsevier, vol. 112(C), pages 928-938.
    7. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    8. Stathopoulos, P. & Paschereit, C.O., 2015. "Retrofitting micro gas turbines for wet operation. A way to increase operational flexibility in distributed CHP plants," Applied Energy, Elsevier, vol. 154(C), pages 438-446.
    9. Lee, Hoseong & Bush, John & Hwang, Yunho & Radermacher, Reinhard, 2013. "Modeling of micro-CHP (combined heat and power) unit and evaluation of system performance in building application in United States," Energy, Elsevier, vol. 58(C), pages 364-375.
    10. Campos Celador, A. & Erkoreka, A. & Martin Escudero, K. & Sala, J.M., 2011. "Feasibility of small-scale gas engine-based residential cogeneration in Spain," Energy Policy, Elsevier, vol. 39(6), pages 3813-3821, June.
    11. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    12. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    13. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    14. Zhao, X.L. & Fu, L. & Zhang, S.G. & Jiang, Y. & Li, H., 2010. "Performance improvement of a 70 kWe natural gas combined heat and power (CHP) system," Energy, Elsevier, vol. 35(4), pages 1848-1853.
    15. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    16. Merkel, Erik & McKenna, Russell & Fichtner, Wolf, 2015. "Optimisation of the capacity and the dispatch of decentralised micro-CHP systems: A case study for the UK," Applied Energy, Elsevier, vol. 140(C), pages 120-134.
    17. Houwing, Michiel & Ajah, Austin N. & Heijnen, Petra W. & Bouwmans, Ivo & Herder, Paulien M., 2008. "Uncertainties in the design and operation of distributed energy resources: The case of micro-CHP systems," Energy, Elsevier, vol. 33(10), pages 1518-1536.
    18. Nosrat, Amir H. & Swan, Lukas G. & Pearce, Joshua M., 2013. "Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage," Energy, Elsevier, vol. 49(C), pages 366-374.
    19. Obara, Shin’ya & Watanabe, Seizi & Rengarajan, Balaji, 2011. "Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump," Energy, Elsevier, vol. 36(8), pages 5200-5213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Manuel Salmerón Lissén & Laura Romero Rodríguez & Francisco Durán Parejo & Francisco José Sánchez de la Flor, 2018. "An Economic, Energy, and Environmental Analysis of PV/Micro-CHP Hybrid Systems: A Case Study of a Tertiary Building," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    2. Guillermo Rey & Carlos Ulloa & Jose Luis Míguez & Elena Arce, 2016. "Development of an ICE-Based Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different Euro," Energies, MDPI, vol. 9(4), pages 1-14, March.
    3. Schütz, Thomas & Schraven, Markus Hans & Remy, Sebastian & Granacher, Julia & Kemetmüller, Dominik & Fuchs, Marcus & Müller, Dirk, 2017. "Optimal design of energy conversion units for residential buildings considering German market conditions," Energy, Elsevier, vol. 139(C), pages 895-915.
    4. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    5. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2023. "Smart energy systems for renewable energy communities: A comparative analysis of power-to-X strategies for improving energy self-consumption," Energy, Elsevier, vol. 280(C).
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    9. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    10. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    12. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
    13. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    14. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    15. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    16. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    17. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    18. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    19. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
    20. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:828-838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.