[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1512-1518.html
   My bibliography  Save this article

Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure

Author

Listed:
  • Cao, Fangyu
  • Yang, Bao
Abstract
A new method for supercooling suppression of microencapsulated phase change materials (PCMs) has been developed by optimizing the composition and structure of the microcapsule resin shell. The microcapsules comprising paraffin octadecane encapsulated in melamine–formaldehyde resin shell were synthesized with the use the oil-in-water emulsion technique. These PCM microcapsules are 5–15μm in diameter. The supercooling of these octadecane microcapsules can be as large as 13.6°C, when the homogeneous nucleation is dominant during the melt crystallization into the thermodynamically stable triclinic phase. It is discovered that the homogeneous nucleation can be mediated by shell-induced nucleation of the triclinic phase and the metastable rotator phase when the shell composition and structure are optimized, without need of any nucleating additives. The effects of synthesis parameters, such as ratio of melamine to formaldehyde, pH of pre-polymer, and pH of emulsion, on the phase transition properties of the octadecane microcapsules have been investigated systemically. The optimum synthesis conditions have been identified in terms of minimizing the supercooling while maintaining heat capacity. Potential applications of this type of phase changeable microcapsules include high heat capacity thermal fluids, thermal management in smart buildings, and smart textiles.

Suggested Citation

  • Cao, Fangyu & Yang, Bao, 2014. "Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure," Applied Energy, Elsevier, vol. 113(C), pages 1512-1518.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1512-1518
    DOI: 10.1016/j.apenergy.2013.08.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oró, E. & de Gracia, A. & Castell, A. & Farid, M.M. & Cabeza, L.F., 2012. "Review on phase change materials (PCMs) for cold thermal energy storage applications," Applied Energy, Elsevier, vol. 99(C), pages 513-533.
    2. Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
    3. Xu, Biwan & Li, Zongjin, 2013. "Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 105(C), pages 229-237.
    4. Chen, Zhong-Hua & Yu, Fei & Zeng, Xing-Rong & Zhang, Zheng-Guo, 2012. "Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier," Applied Energy, Elsevier, vol. 91(1), pages 7-12.
    5. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
    6. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2010. "Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications," Applied Energy, Elsevier, vol. 87(2), pages 620-628, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wenhao & Huang, Xinyu & Li, Kai & Yao, Ruimin & Chen, Renjie & Zou, Ruqiang, 2017. "A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion," Applied Energy, Elsevier, vol. 190(C), pages 474-480.
    2. Qiu, Zhongzhu & Zhou, Yufei & Yao, Yuan & Liu, Fang & Guo, Ruitang, 2019. "Modification of microencapsulated phase change materials(MPCMs) by synthesizing graphene quantum dots(GQDs) and nano-aluminum for energy storage and heat transfer applications," Energy, Elsevier, vol. 181(C), pages 1331-1338.
    3. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. He, Fang & Wang, Xiaodong & Wu, Dezhen, 2015. "Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor," Renewable Energy, Elsevier, vol. 74(C), pages 689-698.
    5. Jianhao Gu & Jiajie Du & Yuxin Li & Jinpei Li & Longfei Chen & Yan Chai & Yongli Li, 2023. "Preparation and Characterization of n-Octadecane@SiO 2 /GO and n-Octadecane@SiO 2 /Ag Nanoencapsulated Phase Change Material for Immersion Cooling of Li-Ion Battery," Energies, MDPI, vol. 16(3), pages 1-16, February.
    6. Al-Shannaq, Refat & Kurdi, Jamal & Al-Muhtaseb, Shaheen & Dickinson, Michelle & Farid, Mohammed, 2015. "Supercooling elimination of phase change materials (PCMs) microcapsules," Energy, Elsevier, vol. 87(C), pages 654-662.
    7. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    8. Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
    9. Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2019. "Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement," Energy, Elsevier, vol. 188(C).
    10. Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
    11. Safari, A. & Saidur, R. & Sulaiman, F.A. & Xu, Yan & Dong, Joe, 2017. "A review on supercooling of Phase Change Materials in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 905-919.
    12. Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
    13. Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.
    14. Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
    15. Wang, Tingyu & Wang, Shuangfeng & Luo, Ruilian & Zhu, Chunyu & Akiyama, Tomohiro & Zhang, Zhengguo, 2016. "Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage," Applied Energy, Elsevier, vol. 171(C), pages 113-119.
    16. Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
    17. Liu, Lu & Zhang, Xuelai & Xu, Xiaofeng & Lin, Xiangwei & Zhao, Yi & Zou, Lingeng & Wu, Yifan & Zheng, Huifan, 2021. "Development of low-temperature eutectic phase change material with expanded graphite for vaccine cold chain logistics," Renewable Energy, Elsevier, vol. 179(C), pages 2348-2358.
    18. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2014. "Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials," Applied Energy, Elsevier, vol. 134(C), pages 456-468.
    20. Tang, Jia & Yang, Mu & Yu, Fang & Chen, Xingyu & Tan, Li & Wang, Ge, 2017. "1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage," Applied Energy, Elsevier, vol. 187(C), pages 514-522.
    21. Zhang, Ying & Wang, Xiaodong & Wu, Dezhen, 2016. "Microencapsulation of n-dodecane into zirconia shell doped with rare earth: Design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage," Energy, Elsevier, vol. 97(C), pages 113-126.
    22. Zhang, Zhaoli & Yuan, Yanping & Zhang, Nan & Cao, Xiaoling, 2015. "Experimental investigation on thermophysical properties of capric acid–lauric acid phase change slurries for thermal storage system," Energy, Elsevier, vol. 90(P1), pages 359-368.
    23. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giro-Paloma, Jessica & Oncins, Gerard & Barreneche, Camila & Martínez, Mònica & Fernández, A. Inés & Cabeza, Luisa F., 2013. "Physico-chemical and mechanical properties of microencapsulated phase change material," Applied Energy, Elsevier, vol. 109(C), pages 441-448.
    2. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    3. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
    4. Lazaro, Ana & Peñalosa, Conchita & Solé, Aran & Diarce, Gonzalo & Haussmann, Thomas & Fois, Magali & Zalba, Belén & Gshwander, Stefan & Cabeza, Luisa F., 2013. "Intercomparative tests on phase change materials characterisation with differential scanning calorimeter," Applied Energy, Elsevier, vol. 109(C), pages 415-420.
    5. Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
    6. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    7. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    8. Wu, Wenhao & Huang, Xinyu & Li, Kai & Yao, Ruimin & Chen, Renjie & Zou, Ruqiang, 2017. "A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion," Applied Energy, Elsevier, vol. 190(C), pages 474-480.
    9. Lu, W. & Tassou, S.A., 2013. "Characterization and experimental investigation of phase change materials for chilled food refrigerated cabinet applications," Applied Energy, Elsevier, vol. 112(C), pages 1376-1382.
    10. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    12. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
    13. Al-Shannaq, Refat & Young, Brent & Farid, Mohammed, 2019. "Cold energy storage in a packed bed of novel graphite/PCM composite spheres," Energy, Elsevier, vol. 171(C), pages 296-305.
    14. Wang, Yunming & Tang, Bingtao & Zhang, Shufen, 2014. "Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light," Applied Energy, Elsevier, vol. 113(C), pages 59-66.
    15. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    16. Shafie-khah, M. & Kheradmand, M. & Javadi, S. & Azenha, M. & de Aguiar, J.L.B. & Castro-Gomes, J. & Siano, P. & Catalão, J.P.S., 2016. "Optimal behavior of responsive residential demand considering hybrid phase change materials," Applied Energy, Elsevier, vol. 163(C), pages 81-92.
    17. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
    18. Liu, Yushi & Yang, Yingzi, 2018. "Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide," Renewable Energy, Elsevier, vol. 115(C), pages 734-740.
    19. Ma, F. & Zhang, P. & Shi, X.J., 2018. "Investigation of thermo-fluidic performance of phase change material slurry and energy transport characteristics," Applied Energy, Elsevier, vol. 227(C), pages 643-654.
    20. Wi, Seunghwan & Jeong, Su-Gwang & Chang, Seong Jin & Lee, Jongki & Kim, Sumin, 2017. "Evaluation of energy efficient hybrid hollow plaster panel using phase change material/xGnP composites," Applied Energy, Elsevier, vol. 205(C), pages 1548-1559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1512-1518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.