[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v99y2012icp13-22.html
   My bibliography  Save this article

Agent-based modeling for trading wind power with uncertainty in the day-ahead wholesale electricity markets of single-sided auctions

Author

Listed:
  • Li, Gong
  • Shi, Jing
Abstract
This paper, for the first time, adopts agent-based simulation approach to investigate the bidding optimization of a wind generation company in the deregulated day-ahead electricity wholesale markets, by considering the effect of short-term forecasting accuracy of wind power generation. Two different wind penetration levels (12% and 24%) are investigated and compared. Based on MATPOWER 4.0 software package and the 9-bus 3-generator power system defined by Western System Coordinating Council, the agent-based models are built and run under the uniform price auction rule and locational marginal pricing mechanism. Each generation company could learn from its past experience and improves its day-ahead strategic offers by using Variant Roth–Erev reinforcement learning algorithm. The results clearly demonstrate that improving wind forecasting accuracy helps increase the net earnings of the wind generation company. Also, the wind generation company can further increase its net earnings with the adoption of learning algorithm. Besides, it is verified that increasing wind penetration level within the investigation range can help reduce the market clearing price. Furthermore, it is also demonstrated that agent-based simulation is a viable modeling tool which can provide realistic insights for the complex interactions among different market participants and various market factors.

Suggested Citation

  • Li, Gong & Shi, Jing, 2012. "Agent-based modeling for trading wind power with uncertainty in the day-ahead wholesale electricity markets of single-sided auctions," Applied Energy, Elsevier, vol. 99(C), pages 13-22.
  • Handle: RePEc:eee:appene:v:99:y:2012:i:c:p:13-22
    DOI: 10.1016/j.apenergy.2012.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191200308X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    2. Li, Hongyan & Tesfatsion, Leigh S., 2009. "The AMES Wholesale Power Market Test Bed: A Computational Laboratory for Research, Teaching, and Training," Staff General Research Papers Archive 13073, Iowa State University, Department of Economics.
    3. Hu, Xinmin & Grozev, George & Batten, David, 2005. "Empirical observations of bidding patterns in Australia's National Electricity Market," Energy Policy, Elsevier, vol. 33(16), pages 2075-2086, November.
    4. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    5. Li, Gong & Shi, Jing & Qu, Xiuli, 2011. "Modeling methods for GenCo bidding strategy optimization in the liberalized electricity spot market–A state-of-the-art review," Energy, Elsevier, vol. 36(8), pages 4686-4700.
    6. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    7. Veit, Daniel J. & Weidlich, Anke & Krafft, Jacob A., 2009. "An agent-based analysis of the German electricity market with transmission capacity constraints," Energy Policy, Elsevier, vol. 37(10), pages 4132-4144, October.
    8. Barthelmie, R.J. & Murray, F. & Pryor, S.C., 2008. "The economic benefit of short-term forecasting for wind energy in the UK electricity market," Energy Policy, Elsevier, vol. 36(5), pages 1687-1696, May.
    9. Giabardo, Paolo & Zugno, Marco & Pinson, Pierre & Madsen, Henrik, 2010. "Feedback, competition and stochasticity in a day ahead electricity market," Energy Economics, Elsevier, vol. 32(2), pages 292-301, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    2. Li, Gong & Shi, Jing & Qu, Xiuli, 2011. "Modeling methods for GenCo bidding strategy optimization in the liberalized electricity spot market–A state-of-the-art review," Energy, Elsevier, vol. 36(8), pages 4686-4700.
    3. Esmaeili Aliabadi, Danial & Kaya, Murat & Sahin, Guvenc, 2017. "Competition, risk and learning in electricity markets: An agent-based simulation study," Applied Energy, Elsevier, vol. 195(C), pages 1000-1011.
    4. Block, C. & Collins, J. & Ketter, W. & Weinhardt, C., 2009. "A Multi-Agent Energy Trading Competition," ERIM Report Series Research in Management ERS-2009-054-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Young, David & Poletti, Stephen & Browne, Oliver, 2014. "Can agent-based models forecast spot prices in electricity markets? Evidence from the New Zealand electricity market," Energy Economics, Elsevier, vol. 45(C), pages 419-434.
    6. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    7. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Post-Print hal-03461120, HAL.
    8. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    9. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    10. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
    11. Mauro Napoletano, 2018. "A Short Walk on the Wild Side: Agent-Based Models and their Implications for Macroeconomic Analysis," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 257-281.
    12. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    13. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    14. Mehdi Jabbari Zideh & Seyed Saeid Mohtavipour, 2017. "Two-Sided Tacit Collusion: Another Step towards the Role of Demand-Side," Energies, MDPI, vol. 10(12), pages 1-19, December.
    15. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    16. Dina A. Zaki & Mohamed Hamdy, 2022. "A Review of Electricity Tariffs and Enabling Solutions for Optimal Energy Management," Energies, MDPI, vol. 15(22), pages 1-17, November.
    17. repec:hal:spmain:info:hdl:2441/2qdhj5485p93jrnf08s1meeap9 is not listed on IDEAS
    18. Hoolohan, Victoria & Tomlin, Alison S. & Cockerill, Timothy, 2018. "Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data," Renewable Energy, Elsevier, vol. 126(C), pages 1043-1054.
    19. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    21. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    22. Zhao, Huan, 2011. "Four Market Studies for the Beef and Electric Power Industries," ISU General Staff Papers 201101010800001360, Iowa State University, Department of Economics.
    23. Cristina Ballester & Dolores Furió, 2017. "Impact of Wind Electricity Forecasts on Bidding Strategies," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    24. Salehizadeh, Mohammad Reza & Soltaniyan, Salman, 2016. "Application of fuzzy Q-learning for electricity market modeling by considering renewable power penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1172-1181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:99:y:2012:i:c:p:13-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.