[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v133y2015icp177-189.html
   My bibliography  Save this article

Potential effects of perfect seasonal climate forecasting on agricultural markets, welfare and land use: A case study of Spain

Author

Listed:
  • Choi, Hyung Sik
  • Schneider, Uwe A.
  • Rasche, Livia
  • Cui, Junbo
  • Schmid, Erwin
  • Held, Hermann
Abstract
Climate forecasting has emerged as an adaptation option for agriculture to better cope with climate variability. We use a coupled climate-crop-economy modeling system to analyze the value of climate information (VOI) in Spain for the domestic agricultural sector and for international agricultural markets. Climate variability in Spain is represented by the observed variability over a 30 year history. We assume perfect accuracy of seasonal climate forecasting but distinguish conservative and proactive crop mix adjustments. We also contrast nationally restricted dissemination of Spanish climate forecasts versus global dissemination. Averaged over the simulated climate states, the global benefits of Spanish climate forecasts range between 61 and 189 million US$ per year. Agricultural consumers in Spain gain between 0.8 and 2.9 percent and Spanish farm revenues increase between 1.9 and 7.0 percent. If Spanish farmers consider crop mix choices outside historical bounds (proactive reaction) their revenues are notably higher than otherwise (conservative reaction). The VOI under favorable climate conditions is greater than under adverse climate conditions. When adverse climate conditions are forecast, negative VOI could materialize for the Spanish farmers because of production and welfare transfers from Spain to other countries. Information sharing of Spanish climate predictions with the rest of the world (ROW) increases not only global welfare but also Spanish producers' benefits. Finally, climate forecasting promotes a more efficient use of agricultural resources. The agricultural efficiency increase due to climate forecasts translates into welfare-neutral land savings of 2 percent in Spain.

Suggested Citation

  • Choi, Hyung Sik & Schneider, Uwe A. & Rasche, Livia & Cui, Junbo & Schmid, Erwin & Held, Hermann, 2015. "Potential effects of perfect seasonal climate forecasting on agricultural markets, welfare and land use: A case study of Spain," Agricultural Systems, Elsevier, vol. 133(C), pages 177-189.
  • Handle: RePEc:eee:agisys:v:133:y:2015:i:c:p:177-189
    DOI: 10.1016/j.agsy.2014.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X14001395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2014.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mjelde, J. W. & Hill, H. S. J., 1999. "The effect of the use of improved climate forecasts on variable costs, input usage, and production," Agricultural Systems, Elsevier, vol. 60(3), pages 213-225, June.
    2. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    3. Dercon, Stefan, 2004. "Growth and shocks: evidence from rural Ethiopia," Journal of Development Economics, Elsevier, vol. 74(2), pages 309-329, August.
    4. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    5. Lambert, David K. & McCarl, Bruce A. & He, Quifen & Kaylen, Michael S. & Rosenthal, Wesley & Chang, Ching-Cheng & Nayda, W.I., 1995. "Uncertain Yields In Sectoral Welfare Analysis: An Application To Global Warming," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 27(2), pages 1-14, December.
    6. Harvey S. J. Hill & James W. Mjelde & H. Alan Love & Debra J. Rubas & Stephen W. Fuller & Wesley Rosenthal & Graeme Hammer, 2004. "Implications of Seasonal Climate Forecasts on World Wheat Trade: A Stochastic, Dynamic Analysis," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 52(3), pages 289-312, November.
    7. Xiaoguang Chen & Hayri Önal, 2012. "Modeling Agricultural Supply Response Using Mathematical Programming and Crop Mixes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 674-686.
    8. Franziska Strauss & Erwin Schmid & Elena Moltchanova & Herbert Formayer & Xiuying Wang, 2012. "Modeling climate change and biophysical impacts of crop production in the Austrian Marchfeld Region," Climatic Change, Springer, vol. 111(3), pages 641-664, April.
    9. Hansen, James W., 2002. "Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges," Agricultural Systems, Elsevier, vol. 74(3), pages 309-330, December.
    10. Marijn Velde & Francesco Tubiello & Anton Vrieling & Fayçal Bouraoui, 2012. "Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data," Climatic Change, Springer, vol. 113(3), pages 751-765, August.
    11. Baiman, S, 1975. "Evaluation And Choice Of Internal Information-Systems Within A Multiperson World," Journal of Accounting Research, Wiley Blackwell, vol. 13(1), pages 1-15.
    12. Pfeifer, Christian & Schredelseker, Klaus & Seeber, Gilg U.H., 2009. "On the negative value of information in informationally inefficient markets: Calculations for large number of traders," European Journal of Operational Research, Elsevier, vol. 195(1), pages 117-126, May.
    13. Stanley R. Johnson & Matthew T. Holt, 1986. "Value of Climate Information, The," Center for Agricultural and Rural Development (CARD) Publications 86-sr6, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    14. Bruce A. McCarl, 1982. "Cropping Activities in Agricultural Sector Models: A Methodological Proposal," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(4), pages 768-772.
    15. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    16. Messina, C. D. & Hansen, J. W. & Hall, A. J., 1999. "Land allocation conditioned on El Nino-Southern Oscillation phases in the Pampas of Argentina," Agricultural Systems, Elsevier, vol. 60(3), pages 197-212, June.
    17. Ziervogel, Gina & Bithell, Mike & Washington, Richard & Downing, Tom, 2005. "Agent-based social simulation: a method for assessing the impact of seasonal climate forecast applications among smallholder farmers," Agricultural Systems, Elsevier, vol. 83(1), pages 1-26, January.
    18. Trostle, Ronald, 2011. "Why Another Food Commodity Price Spike?," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, pages 1-7.
    19. MacAuley, Molly K., 2005. "The Value of Information: A Background Paper on Measuring the Contribution of Space-Derived Earth Science Data to National Resource Management," Discussion Papers 10839, Resources for the Future.
    20. Philip W. Gassman & Jimmy R. Williams & Verel W. Benson & R. César Izaurralde & Larry M. Hauck & C. Allan Jones & Jay D. Atwood & James Kiniry & Joan D. Flowers, 2005. "Historical Development and Applications of the EPIC and APEX Models," Center for Agricultural and Rural Development (CARD) Publications 05-wp397, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    21. Richard M. Adams & Kelly J. Bryant & Bruce A. Mccarl & David M. Legler & James O'Brien & Andrew Solow & Rodney Weiher, 1995. "Value Of Improved Long‐Range Weather Information," Contemporary Economic Policy, Western Economic Association International, vol. 13(3), pages 10-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mitter, H. & Schmid, E., 2018. "The economic value of climate information for water stress management in crop production: an Austrian case study," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277099, International Association of Agricultural Economists.
    2. Eromose Ehije Ebhuoma & Mulala Danny Simatele & Llewellyn Leonard & Osadolor Obiahon Ebhuoma & Felix Kwabena Donkor & Henry Bikwibili Tantoh, 2020. "Theorising Indigenous Farmers’ Utilisation of Climate Services: Lessons from the Oil-Rich Niger Delta," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    3. Ramírez-Rodrigues, Melissa A. & Alderman, Phillip D. & Stefanova, Lydia & Cossani, C. Mariano & Flores, Dagoberto & Asseng, Senthold, 2016. "The value of seasonal forecasts for irrigated, supplementary irrigated, and rainfed wheat cropping systems in northwest Mexico," Agricultural Systems, Elsevier, vol. 147(C), pages 76-86.
    4. Kim, Daeha & Chun, Jong Ahn & Inthavong, Thavone, 2021. "Managing climate risks in a nutrient-deficient paddy rice field using seasonal climate forecasts and AquaCrop," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Andres Fernandez & Pei Huang & Bruce McCarl & Vikram Mehta, 2016. "Value of decadal climate variability information for agriculture in the Missouri River basin," Climatic Change, Springer, vol. 139(3), pages 517-533, December.
    2. Xu, Yuelu & Elbakidze, Levan & Yen, Haw & Arnold, Jeffrey G. & Gassman, Philip W. & Hubbart, Jason & Strager, Michael P., 2022. "Integrated assessment of nitrogen runoff to the Gulf of Mexico," Resource and Energy Economics, Elsevier, vol. 67(C).
    3. Kirchner, Mathias & Mitter, Hermine & Schönhart, Martin & Schmid, Erwin, 2014. "Integrated land use modelling to analyse climate change adaptation in Austrian agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182944, European Association of Agricultural Economists.
    4. Fernandez, Mario Andres, 2013. "Decadal Climate Variability: Economic Implications In Agriculture And Water In The Missouri River Basin," 2013 Conference, August 28-30, 2013, Christchurch, New Zealand 160199, New Zealand Agricultural and Resource Economics Society.
    5. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    6. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    7. Roy, René & Baker, Laurie & Thomassin, Paul J., 2013. "Estimating the Cost of Agricultural Pollution Abatement: Establishing Beneficial Management Practices in the Bras d’Henri Watershed," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150956, Agricultural and Applied Economics Association.
    8. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    9. Dono, Gabriele & Cortignani, Raffaele & Giraldo, Luca & Doro, Luca & Roggero, Pier Paolo, 2014. "Assessing the awareness of climate change as a factor of adaptation in the agricultural sector," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173110, Italian Association of Agricultural and Applied Economics (AIEAA).
    10. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    11. Macauley, Molly, 2006. "Ascribing Societal Benefit to Environmental Observations of the Earth from Space: The Multi-angle Imaging Spectroradiometer (MISR)," RFF Working Paper Series dp-06-09, Resources for the Future.
    12. Schönhart, Martin & Mitter, Hermine & Schmid, Erwin & Heinrich, Georg & Gobiet, Andreas, 2014. "Integrated Analysis of Climate Change Impacts and Adaptation Measures in Austrian Agriculture," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).
    13. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    14. Vermeulen, S. J. & Aggarwal, Pramod & Ainslie, A. & Angelone, C. & Campbell, B. M. & Challinor, A. J. & Hansen, J. W. & Ingram, J. S. I. & Jarvis, A. & Kristjanson, P. & Lau, C. & Nelson, G. C. & Thor, 2010. "Agriculture, food security and climate change: outlook for knowledge, tools and action. Background paper prepared for The Hague Conference on Agriculture, Food Security and Climate Change, 31 October ," IWMI Research Reports H044643, International Water Management Institute.
    15. Osgood, Daniel E. & Suarez, Pablo & Hansen, James & Carriquiry, Miguel & Mishra, Ashok, 2008. "Integrating seasonal forecasts and insurance for adaptation among subsistence farmers : the case of Malawi," Policy Research Working Paper Series 4651, The World Bank.
    16. Doole, Graeme J. & Marsh, Dan K., 2014. "Methodological limitations in the evaluation of policies to reduce nitrate leaching from New Zealand agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    17. Levan Elbakidze & Brett Schiller & R. Garth Taylor, 2017. "Estimation of Short and Long Run Derived Irrigation Water Demands and Elasticities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, January.
    18. Ying Zhang & Liangzhi You & Donghoon Lee & Paul Block, 2020. "Integrating climate prediction and regionalization into an agro-economic model to guide agricultural planning," Climatic Change, Springer, vol. 158(3), pages 435-451, February.
    19. Tony Prato, 2008. "Accounting for risk and uncertainty in determining preferred strategies for adapting to future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(1), pages 47-60, January.
    20. van Kooten, G. Cornelis & Johnston, Craig, 2014. "Global impacts of Russian log export restrictions and the Canada–U.S. lumber dispute: Modeling trade in logs and lumber," Forest Policy and Economics, Elsevier, vol. 39(C), pages 54-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:133:y:2015:i:c:p:177-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.