[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-17-00029.html
   My bibliography  Save this article

Equity markets volatility dynamics in developed and newly emerging economies: EGARCH-with-skewed-t density approach

Author

Listed:
  • Bala A. Dahiru

    (Federal Inland Revenue Service, 20 Sokode Crescent, Zone 5, Abuja, FCT, Nigeria.)

  • Pam W. Jim

    (Federal Inland Revenue Service, 20 Sokode Crescent, Zone 5, Abuja, FCT, Nigeria.)

  • Kalu N. Nwonyuku

    (Federal Inland Revenue Service, 20 Sokode Crescent, Zone 5, Abuja, FCT, Nigeria.)

Abstract
We examine the volatility dynamics of four “newly†emerging and four developed stock markets using GARCH-type models and their variants and identify breaks in returns using the ICSS test proposed by Inclan and Tiao (1994). We compare MINT (Mexico, Indonesia, Nigeria and Turkey) emerging markets with those of four developed markets (France, Germany, Japan and USA) using weekly data from January 3, 1994 to March 31, 2014 and for Indonesia from July 1, 1997 to March 31, 2014. The estimates of GARCH, EGARCH (with and without breaks) and EGARCH-with-skewed-t density models are assessed to analyse the impact of variance shifts and distributional assumptions on equity market returns. Results reveal that the incorporation of variance shifts reduces the level of persistence in GARCH models. Stability and fluctuation tests suggest that returns and conditional volatilities in the stock markets have not been stable, especially during periods of financial crises. The paper concludes that EGARCH-with-skewed-t density specification exhibits improved model diagnostics compared to the standard (a)symmetric GARCH models (with Gaussian or Student's t densities) in the context of skewness, leverage and fat tails often present in financial returns.

Suggested Citation

  • Bala A. Dahiru & Pam W. Jim & Kalu N. Nwonyuku, 2017. "Equity markets volatility dynamics in developed and newly emerging economies: EGARCH-with-skewed-t density approach," Economics Bulletin, AccessEcon, vol. 37(4), pages 2394-2412.
  • Handle: RePEc:ebl:ecbull:eb-17-00029
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2017/Volume37/EB-17-V37-I4-P214.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beetsma, Roel & Giuliodori, Massimo, 2012. "The changing macroeconomic response to stock market volatility shocks," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 281-293.
    2. William Schwert, G., 2002. "Stock volatility in the new millennium: how wacky is Nasdaq?," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 3-26, January.
    3. Cho, Jaeho & Yoo, Byoung Hark, 2011. "The Korean stock market volatility during the currency crisis and the credit crisis," Japan and the World Economy, Elsevier, vol. 23(4), pages 246-252.
    4. King, Daniel & Botha, Ferdi, 2015. "Modelling stock return volatility dynamics in selected African markets," Economic Modelling, Elsevier, vol. 45(C), pages 50-73.
    5. Junsoo Lee & Mark C. Strazicich, 2003. "Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1082-1089, November.
    6. Yaya, OlaOluwa S. & Gil-Alana, Luis A., 2014. "The persistence and asymmetric volatility in the Nigerian stock bull and bear markets," Economic Modelling, Elsevier, vol. 38(C), pages 463-469.
    7. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    8. Alper, C. Emre & Yilmaz, Kamil, 2004. "Volatility and contagion: evidence from the Istanbul stock exchange," Economic Systems, Elsevier, vol. 28(4), pages 353-367, December.
    9. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    10. Hammoudeh, Shawkat & Li, Huimin, 2008. "Sudden changes in volatility in emerging markets: The case of Gulf Arab stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 47-63.
    11. Babikir, Ali & Gupta, Rangan & Mwabutwa, Chance & Owusu-Sekyere, Emmanuel, 2012. "Structural breaks and GARCH models of stock return volatility: The case of South Africa," Economic Modelling, Elsevier, vol. 29(6), pages 2435-2443.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    14. Beltratti, A. & Morana, C., 2006. "Breaks and persistency: macroeconomic causes of stock market volatility," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 151-177.
    15. de Pooter, M.D. & van Dijk, D.J.C., 2004. "Testing for changes in volatility in heteroskedastic time series - a further examination," Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Lastrapes, William D, 1989. "Exchange Rate Volatility and U.S. Monetary Policy: An ARCH Application," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 21(1), pages 66-77, February.
    17. Afees A. Salisu, 2016. "Modelling Oil Price Volatility with the Beta-Skew-t-EGARCH Framework," Economics Bulletin, AccessEcon, vol. 36(3), pages 1315-1324.
    18. Kang, Sang Hoon & Cho, Hwan-Gue & Yoon, Seong-Min, 2009. "Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3543-3550.
    19. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    20. Leeves, Gareth, 2007. "Asymmetric volatility of stock returns during the Asian crisis: Evidence from Indonesia," International Review of Economics & Finance, Elsevier, vol. 16(2), pages 272-286.
    21. Kasman, Saadet & Vardar, Gülin & Tunç, Gökçe, 2011. "The impact of interest rate and exchange rate volatility on banks' stock returns and volatility: Evidence from Turkey," Economic Modelling, Elsevier, vol. 28(3), pages 1328-1334, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    2. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    3. Sang Hoon Kang & Seong-Min Yoon, 2010. "Sudden Changes and Persistence in Volatility of Korean Equity Sector Returns," Korean Economic Review, Korean Economic Association, vol. 26, pages 431-451.
    4. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    5. Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model," Working Papers 07-19, Association Française de Cliométrie (AFC).
    6. Ye Fan & Zhicheng Zhang & Xiaoli Zhao & Haitao Yin, 2018. "Interaction between Industrial Policy and Stock Price Volatility: Evidence from China’s Power Market Reform," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    7. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    8. Nsofor Ebele Sabina & Takon Samuel Manyo & Ugwuegbe Sebastine Ugochukwu, 2017. "Modeling Exchange Rate Volatility and Economic Growth in Nigeria," Noble International Journal of Economics and Financial Research, Noble Academic Publsiher, vol. 2(6), pages 88-97, June.
    9. Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers of BETA 2019-43, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    10. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "How do OPEC news and structural breaks impact returns and volatility in crude oil markets? Further evidence from a long memory process," Energy Economics, Elsevier, vol. 42(C), pages 343-354.
    12. Mohamed Chikhi & Claude Diebolt & Tapas Mishra, 2019. "Measuring Success: Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers 11-19, Association Française de Cliométrie (AFC).
    13. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    14. Christian Urom & Gideon Ndubuisi & Jude Ozor, 2021. "Economic activity, and financial and commodity markets’ shocks: An analysis of implied volatility indexes," International Economics, CEPII research center, issue 165, pages 51-66.
    15. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    16. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    17. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
    18. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    19. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    20. repec:wyi:journl:002190 is not listed on IDEAS
    21. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.

    More about this item

    Keywords

    Equity Market Volatility; ICSS; GARCH; Unit Roots; Variance Breaks; MINT; EGARCH-with-skewed-t model;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-17-00029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.