Investor's sentiment in predicting the Effective Federal Funds Rate
Author
Suggested Citation
Download full text from publisher
References listed on IDEAS
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- Nikolaos Askitas & Klaus F. Zimmermann, 2009.
"Google Econometrics and Unemployment Forecasting,"
Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," RatSWD Research Notes 41, German Data Forum (RatSWD).
- Askitas, Nikos & Zimmermann, Klaus F., 2009. "Google Econometrics and Unemployment Forecasting," IZA Discussion Papers 4201, Institute of Labor Economics (IZA).
- Nikos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Discussion Papers of DIW Berlin 899, DIW Berlin, German Institute for Economic Research.
- Joel T. Krueger & Kenneth N. Kuttner, 1996.
"The Fed funds futures rate as a predictor of federal reserve policy,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(8), pages 865-879, December.
- Joel Krueger & Kenneth N. Kuttner, 1995. "The Fed funds futures rate as a predictor of Federal Reserve policy," Working Paper Series, Macroeconomic Issues 95-4, Federal Reserve Bank of Chicago.
- Sarno, Lucio & Thornton, Daniel L & Valente, Giorgio, 2005.
"Federal Funds Rate Prediction,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 449-471, June.
- Sarno, Lucio & Daniel l Thornton & Giorgio Valente, 2003. "Federal Funds Rate Prediction," Royal Economic Society Annual Conference 2003 183, Royal Economic Society.
- Lucio Sarno & Daniel L. Thornton & Giorgio Valente, 2004. "Federal funds rate prediction," Working Papers 2002-005, Federal Reserve Bank of St. Louis.
- Sarno, Lucio & Thornton, Daniel L & Valente, Giorgio, 2004. "Federal Funds Rate Prediction," CEPR Discussion Papers 4587, C.E.P.R. Discussion Papers.
- Clarida, Richard & Gali, Jordi & Gertler, Mark, 1998.
"Monetary policy rules in practice Some international evidence,"
European Economic Review, Elsevier, vol. 42(6), pages 1033-1067, June.
- Clarida, Richard & Gali, Jordi & Gertler, Mark, 1997. "Monetary Policy Rules in Practice: Some International Evidence," Working Papers 97-32, C.V. Starr Center for Applied Economics, New York University.
- Clarida, Richard & Galí, Jordi & Gertler, Mark, 1997. "Monetary Policy Rules in Practice: Some International Evidence," CEPR Discussion Papers 1750, C.E.P.R. Discussion Papers.
- Richard Clarida & Jordi Gali & Mark Gertler, 1997. "Monetary Policy Rules in Practice: Some International Evidence," NBER Working Papers 6254, National Bureau of Economic Research, Inc.
- Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Michael S. Drake & Darren T. Roulstone & Jacob R. Thornock, 2012. "Investor Information Demand: Evidence from Google Searches Around Earnings Announcements," Journal of Accounting Research, Wiley Blackwell, vol. 50(4), pages 1001-1040, September.
- Miguel Acosta & Ellen E. Meade, 2015. "Hanging on Every Word : Semantic Analysis of the FOMC's Postmeeting Statement," FEDS Notes 2015-09-30, Board of Governors of the Federal Reserve System (U.S.).
- Richard H. Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary policy rules in practice," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
- Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
- Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lee, Chien-Chiang & Chen, Mei-Ping, 2021. "The effects of investor attention and policy uncertainties on cross-border country exchange-traded fund returns," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 830-852.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Puhr, Harald & Müllner, Jakob, 2024. "Vox populi, vox dei: A concept and measure for grassroots socio-political risk using Google Trends," Journal of International Management, Elsevier, vol. 30(2).
- Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
- Andreea Avramescu & Arkadiusz Wiśniowski, 2021. "Now-casting Romanian migration into the United Kingdom by using Google Search engine data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(40), pages 1219-1254.
- Meshcheryakov, Artem & Winters, Drew B., 2022. "Retail investor attention and the limit order book: Intraday analysis of attention-based trading," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
- Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
- Böhme, Marcus H. & Gröger, André & Stöhr, Tobias, 2020. "Searching for a better life: Predicting international migration with online search keywords," Journal of Development Economics, Elsevier, vol. 142(C).
- Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
- Konstantinos N. Konstantakis & Despoina Paraskeuopoulou & Panayotis G. Michaelides & Efthymios G. Tsionas, 2021. "Bank deposits and Google searches in a crisis economy: Bayesian non‐linear evidence for Greece (2009–2015)," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5408-5424, October.
- Massimo Guidolin & Alexei G. Orlov & Manuela Pedio, 2018. "How good can heuristic-based forecasts be? A comparative performance of econometric and heuristic models for UK and US asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 139-169, January.
- Bentzen, Jeanet Sinding, 2021.
"In crisis, we pray: Religiosity and the COVID-19 pandemic,"
Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
- Bentzen, Jeanet, 2020. "In Crisis, We Pray: Religiosity and the COVID-19 Pandemic," CEPR Discussion Papers 14824, C.E.P.R. Discussion Papers.
- Geng, Yuedan & Ye, Qiang & Jin, Yu & Shi, Wen, 2022. "Crowd wisdom and internet searches: What happens when investors search for stocks?," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Perroni, Carlo & Scharf, Kimberley & Talavera, Oleksandr & Vi, Linh, 2022.
"Does online salience predict charitable giving? Evidence from SMS text donations,"
Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 134-149.
- Carlo Perroni & Kimberley Ann Scharf & Oleksandr Talavera & Linh Vi, 2021. "Does Online Salience Predict Charitable Giving? Evidence from SMS Text Donations," CESifo Working Paper Series 9436, CESifo.
- Perroni, Carlo & Scharf, Kimberley & Talavera, Oleksandr & Vi, Linh, 2022. "Does Online Salience Predict Charitable Giving? Evidence from SMS Text Donations," CEPR Discussion Papers 17030, C.E.P.R. Discussion Papers.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
- Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
- Qian Chen & Xiang Gao & Jianming Mo & Zhouling Xu, 2022. "Market Reaction to Local Attention around Earnings Announcements in China: Evidence from Internet Search Activity," IJFS, MDPI, vol. 10(4), pages 1-26, October.
More about this item
Keywords
effective federal funds rate; google search; internet search; investor attention; online search; federal reserve; federal rate; federal funds rate; investor; sentiment; anticipation; forecast; prediction;All these keywords.
JEL classification:
- E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
- E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-16-00751. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.