[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2020-06-23.html
   My bibliography  Save this article

Dynamic Modeling Data Export Oil and Gas and Non-Oil and Gas by ARMA(2,1)-GARCH(1,1) Model: Study of Indonesian s Export over the Years 2008-2019

Author

Listed:
  • Nairobi Nairobi

    (Department of Economic Development, Faculty of Economic and Business, Universitas Lampung, Indonesia,)

  • Edwin Russel

    (Department of Economic Development, Faculty of Economic and Business, Universitas Lampung, Indonesia,)

  • Ambya Ambya

    (Department of Economic Development, Faculty of Economic and Business, Universitas Lampung, Indonesia,)

  • Arif Darmawan

    (Department of Economic Development, Faculty of Economic and Business, Universitas Lampung, Indonesia,)

  • Mustofa Usman

    (Department of Mathematics, Faculty of Mathematics and Sciences, Universitas Lampung, Indonesia)

  • Wamiliana Wamiliana

    (Department of Mathematics, Faculty of Mathematics and Sciences, Universitas Lampung, Indonesia)

Abstract
It is well known that a country's economy is very dependent on the export of goods and services produced by that country. This depends on exporting either mining products such as oil and gas or non-oil and gas. This paper will study the data export of oil and gas and data export of non-oil and gas of Indonesian over the years 2008 to 2019. The aim of this study is to obtain the best model that can describe the pattern of the data export of oil and gas and data export of non-oil and gas. From the results of the analysis, researchers found that the best models that can describe the pattern of data export of oil and gas and data export of non-oil and gas are the same, namely: ARMA (2.1) -GARCH (1.1) models. These models for both data are very significant with P-values

Suggested Citation

  • Nairobi Nairobi & Edwin Russel & Ambya Ambya & Arif Darmawan & Mustofa Usman & Wamiliana Wamiliana, 2020. "Dynamic Modeling Data Export Oil and Gas and Non-Oil and Gas by ARMA(2,1)-GARCH(1,1) Model: Study of Indonesian s Export over the Years 2008-2019," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 175-184.
  • Handle: RePEc:eco:journ2:2020-06-23
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/9892/5434
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/9892/5434
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chia Chun Lo & Konstantinos Skindilias & Andreas Karathanasopoulos, 2016. "Forecasting Latent Volatility through a Markov Chain Approximation Filter," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(1), pages 54-69, January.
    2. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. K. Hsieh & P. Ritchken, 2005. "An empirical comparison of GARCH option pricing models," Review of Derivatives Research, Springer, vol. 8(3), pages 129-150, December.
    5. Hung‐Hsi Huang & Yung‐Ming Shiu & Pei‐Syun Lin, 2008. "HDD and CDD option pricing with market price of weather risk for Taiwan," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(8), pages 790-814, August.
    6. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    7. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustofa Usman & M. Komarudin & Nurhanurawati Nurhanurawati & Edwin Russel & Ahmad Sidiq & Warsono Warsono & F. A.M Elfaki, 2023. "Dynamic Modeling and Analysis of Some Energy Companies of Indonesia Over the Year 2018 to 2022 By Using VAR(p)-CCC GARCH(r,s) Model: -," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 542-554, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suripto & Supriyanto, 2021. "The Effect of the COVID-19 Pandemic on Stock Prices with the Event Window Approach: A Case Study of State Gas Companies, in the Energy Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 155-162.
    2. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    4. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    5. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    8. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    9. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    10. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    11. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    12. Amir Atiya & Steve Wall, 2009. "An analytic approximation of the likelihood function for the Heston model volatility estimation problem," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 289-296.
    13. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    14. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    15. David G. McMillan & Pako Thupayagale, 2009. "The efficiency of African equity markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 275-292, October.
    16. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Jiangze Du & Shaojie Lai & Kin Keung Lai & Shifei Zhou, 2021. "A novel term structure stochastic model with adaptive correlation for trend analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5485-5498, October.
    18. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    19. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    20. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.

    More about this item

    Keywords

    Akaike s Information Criterion; Autoregressive Moving Average; Generalized Autoregressive Conditional Heteroscedasticity; Mean Average Percentage Error.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-06-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.