Author
Listed:
- Nze, Patrick Ango
- Doukhan, Paul
AbstractIn this paper we discuss weak dependence and mixing properties of some popular models. We also develop some of their econometric applications. Autoregressive models, autoregressive conditional heteroskedasticity (ARCH) models, and bilinear models are widely used in econometrics. More generally, stationary Markov modeling is often used. Bernoulli shifts also generate many useful stationary sequences, such as autoregressive moving average (ARMA) or ARCH(∞) processes. For Volterra processes, mixing properties obtain given additional regularity assumptions on the distribution of the innovations.We recall associated probability limit theorems and investigate the nonparametric estimation of those sequences.We first thank the editor for the huge amount of additional editorial work provided for this review paper. The efficiency of the numerous referees was especially useful. The error pointed out in Hall and Horowitz (1996) was the origin of the present paper, and we thank the referees for asking for a more detailed treatment of a correct proof for this paper in Section 2.3. Also we thank Marc Henry and Rafal Wojakowski for a very careful rereading of the paper. An anonymous referee has been particularly helpful in the process of revision of the paper. The authors thank him for his numerous suggestions of improvement, including important results on negatively associated sequences and a thorough update in standard English.
Suggested Citation
Nze, Patrick Ango & Doukhan, Paul, 2004.
"Weak Dependence: Models And Applications To Econometrics,"
Econometric Theory, Cambridge University Press, vol. 20(6), pages 995-1045, December.
Handle:
RePEc:cup:etheor:v:20:y:2004:i:06:p:995-1045_20
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:20:y:2004:i:06:p:995-1045_20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.