[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v39y2009i02p591-613_00.html
   My bibliography  Save this article

Sharing Risk – An Economic Perspective

Author

Listed:
  • Kull, Andreas
Abstract
We revisit the relative retention problem originally introduced by de Finetti using concepts recently developed in risk theory and quantitative risk management. Instead of using the Variance as a risk measure we consider the Expected Shortfall (Tail-Value-at-Risk) and include capital costs and take constraints on risk capital into account. Starting from a risk-based capital allocation, the paper presents an optimization scheme for sharing risk in a multi-risk class environment. Risk sharing takes place between two portfolios and the pricing of risktransfer reflects both portfolio structures. This allows us to shed more light on the question of how optimal risk sharing is characterized in a situation where risk transfer takes place between parties employing similar risk and performance measures. Recent developments in the regulatory domain (‘risk-based supervision’) pushing for common, insurance industry-wide risk measures underline the importance of this question. The paper includes a simple non-life insurance example illustrating optimal risk transfer in terms of retentions of common reinsurance structures.

Suggested Citation

  • Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
  • Handle: RePEc:cup:astinb:v:39:y:2009:i:02:p:591-613_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100000271/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Damir Filipovic & Michael Kupper, 2007. "On the Group Level Swiss Solvency Test," Research Paper Series 188, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Gary Venter, 2004. "Capital Allocation Survey with Commentary," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 96-107.
    3. Kaluszka, Marek, 2001. "Optimal reinsurance under mean-variance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 61-67, February.
    4. Vajda, Stefan, 1962. "Minimum Variance Reinsurance*)," ASTIN Bulletin, Cambridge University Press, vol. 2(2), pages 257-260, September.
    5. Schnieper, René, 2000. "Portfolio Optimization," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 195-248, May.
    6. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    7. Centeno, Maria de Lourdes, 2002. "Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 37-49, February.
    8. Centeno, Lourdes, 1986. "Measuring the effects of reinsurance by the adjustment coefficient," Insurance: Mathematics and Economics, Elsevier, vol. 5(2), pages 169-182, April.
    9. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Stephen Mildenhall, 2004. "A Note on the Myers and Read Capital Allocation Formula," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 32-44.
    12. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    13. Centeno, Lourdes, 1985. "On Combining Quota-Share and Excess of Loss," ASTIN Bulletin, Cambridge University Press, vol. 15(1), pages 49-63, April.
    14. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albrecher, Hansjörg & Cani, Arian, 2019. "On randomized reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 67-78.
    2. Nicole Bauerle & Alexander Glauner, 2017. "Optimal Risk Allocation in Reinsurance Networks," Papers 1711.10210, arXiv.org.
    3. Bäuerle, Nicole & Glauner, Alexander, 2018. "Optimal risk allocation in reinsurance networks," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 37-47.
    4. Ettlin, Nicolas & Farkas, Walter & Kull, Andreas & Smirnow, Alexander, 2020. "Optimal risk-sharing across a network of insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 39-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ettlin, Nicolas & Farkas, Walter & Kull, Andreas & Smirnow, Alexander, 2020. "Optimal risk-sharing across a network of insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 39-47.
    2. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    3. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    4. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    5. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    6. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    7. Boonen, T.J. & De Waegenaere, A.M.B. & Norde, H.W., 2012. "A Generalization of the Aumann-Shapley Value for Risk Capital Allocation Problems," Other publications TiSEM 2c502ef8-76f0-47f5-ab45-1, Tilburg University, School of Economics and Management.
    8. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    9. Lisa R. Goldberg & Ola Mahmoud, 2014. "Drawdown: From Practice to Theory and Back Again," Papers 1404.7493, arXiv.org, revised Sep 2016.
    10. Melnikov, Alexander & Smirnov, Ivan, 2012. "Dynamic hedging of conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 182-190.
    11. Bauer, Daniel & Kamiya, Shinichi & Ping, Xiaohu & Zanjani, George, 2019. "Dynamic capital allocation with irreversible investments," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 138-152.
    12. Kamil J. Mizgier & Joseph M. Pasia, 2016. "Multiobjective optimization of credit capital allocation in financial institutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 801-817, December.
    13. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    14. Annalisa Di Clemente, 2020. "Modeling Portfolio Credit Risk Taking into Account the Default Correlations Using a Copula Approach: Implementation to an Italian Loan Portfolio," JRFM, MDPI, vol. 13(6), pages 1-24, June.
    15. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    16. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    17. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    18. Csóka Péter & Pintér Miklós, 2016. "On the Impossibility of Fair Risk Allocation," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 16(1), pages 143-158, January.
    19. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    20. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:39:y:2009:i:02:p:591-613_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.