[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/col/000093/004838.html
   My bibliography  Save this article

La curva de rendimientos: una revisión metodológica y nuevas aproximaciones de estimación

Author

Listed:
  • Juan Camilo Santana
Abstract
La curva de rendimientos es una herramienta utilizada ampliamente, por quienes toman las decisiones de política monetaria o planifican sus inversiones, de acuerdo con la valoración, negociación o cobertura sobre instrumentos financieros. Debido a su importancia, el interés del artículo es evaluar el esempeno de un conjunto de modelos econométricos en el ajuste de la estructura a plazos de las tasas de interés (en el escenario del mercado de deuda pública en Colombia y en Estados Unidos), y en las distintas formas que pueden tomar las curvas de rendimientos. Los resultados revelan las bondades en el ajuste de las redes neuronales artificiales (RNA), la curva de Svensson, la curva de Nelson-Siegel y los polinomios locales. No obstante, se recomienda utilizar la curva de Svensson en la estimación de las tasas de interés, debido a la interpretabilidad de sus parámetros y a su superioridad sobre la Curva de Nelson-Siegel.

Suggested Citation

  • Juan Camilo Santana, 2008. "La curva de rendimientos: una revisión metodológica y nuevas aproximaciones de estimación," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, July.
  • Handle: RePEc:col:000093:004838
    as

    Download full text from publisher

    File URL: http://www.fce.unal.edu.co/media/files/documentos/Cuadernos/48/v27n48_santana_2008.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alejandro Revéiz Hérault & Juan Manuel Julio & Silvia Juliana Mera, 2002. "La curva Spot (Cero Cupón), Estimación con splines cúbicos suavizados, usos y ejemplos," Lecturas en Finanzas 2961, Banco de la República.
    2. Lars E.O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994," NBER Working Papers 4871, National Bureau of Economic Research, Inc.
    3. Ramesh Sharda, 1994. "Neural Networks for the MS/OR Analyst: An Application Bibliography," Interfaces, INFORMS, vol. 24(2), pages 116-130, April.
    4. Luis Eduardo Arango & Luis Fernando Melo & Diego Mauricio Vásquez, 2003. "Estimación de la estructura a plazo de las tasas de interés en Colombia," Coyuntura Económica, Fedesarrollo, vol. 33(1), pages 51-76, March.
    5. Svensson, Lars E O, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992-4," CEPR Discussion Papers 1051, C.E.P.R. Discussion Papers.
    6. McCulloch, J Huston, 1971. "Measuring the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 44(1), pages 19-31, January.
    7. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    8. Ben Hunt, 1995. "Modelling the Yields on Australian Coupon Paying Bonds," Working Paper Series 50, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    9. Ben Hunt & Chris Terry, 1998. "Zero-Coupon Yield Curve Estimation: A Principal Component, Polynomial Approach," Working Paper Series 81, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    10. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gauthier, Geneviève & Simonato, Jean-Guy, 2012. "Linearized Nelson–Siegel and Svensson models for the estimation of spot interest rates," European Journal of Operational Research, Elsevier, vol. 219(2), pages 442-451.
    2. Tong, Xiaojun & He, Zhuoqiong Chong & Sun, Dongchu, 2018. "Estimating Chinese Treasury yield curves with Bayesian smoothing splines," Econometrics and Statistics, Elsevier, vol. 8(C), pages 94-124.
    3. Damir Filipovi'c & Sander Willems, 2016. "Exact Smooth Term-Structure Estimation," Papers 1606.03899, arXiv.org, revised Aug 2018.
    4. Rafael Barros de Rezende, 2011. "Giving Flexibility to the Nelson-Siegel Class of Term Structure Models," Brazilian Review of Finance, Brazilian Society of Finance, vol. 9(1), pages 27-49.
    5. Damir Filipović & Sander Willems, 2016. "Exact Smooth Term Structure Estimation," Swiss Finance Institute Research Paper Series 16-38, Swiss Finance Institute.
    6. Aryo Sasongko & Cynthia Afriani Utama & Buddi Wibowo & Zaäfri Ananto Husodo, 2019. "Modifying Hybrid Optimisation Algorithms to Construct Spot Term Structure of Interest Rates and Proposing a Standardised Assessment," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 957-1003, October.
    7. James M. Steeley, 2008. "Testing Term Structure Estimation Methods: Evidence from the UK STRIPS Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(7), pages 1489-1512, October.
    8. Poletti Laurini, Márcio & Moura, Marcelo, 2010. "Constrained smoothing B-splines for the term structure of interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 339-350, April.
    9. Julian Manzano & Jorgen Blomvall, 2004. "Positive forward rates in the maximum smoothness framework," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 221-232.
    10. Annaert, Jan & Claes, Anouk G.P. & De Ceuster, Marc J.K. & Zhang, Hairui, 2013. "Estimating the spot rate curve using the Nelson–Siegel model," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 482-496.
    11. Koo, B. & La Vecchia, D. & Linton, O., 2019. "Nonparametric Recovery of the Yield Curve Evolution from Cross-Section and Time Series Information," Cambridge Working Papers in Economics 1916, Faculty of Economics, University of Cambridge.
    12. Karahan, Cenk C. & Soykök, Emre, 2023. "On illiquidity of an emerging sovereign bond market," Economic Systems, Elsevier, vol. 47(2).
    13. Gangadhar Darbha & Sudipta Dutta Roy & Vardhana Pawaskar, 2002. "Idiosyncratic Factors in Pricing Sovereign Bonds: An Analysis of the Government of India Bond Market," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 1(2), pages 157-181, September.
    14. Lee, Shyan Yuan & Chiou, Wan-Jiun Paul & Chung, Yi-Fang, 2017. "Pricing corporate bonds and constructing credit curves in a developing country: The case of the Taiwan bond fund crisis," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 261-274.
    15. Lauren Stagnol, 2019. "Extracting global factors from local yield curves," Journal of Asset Management, Palgrave Macmillan, vol. 20(5), pages 341-350, September.
    16. Faria, Adriano & Almeida, Caio, 2018. "A hybrid spline-based parametric model for the yield curve," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 72-94.
    17. Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021. "Estimation of a nonparametric model for bond prices from cross-section and time series information," Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.
    18. Kanjilal, Kakali, 2013. "Factors causing movements of yield curve in India," Economic Modelling, Elsevier, vol. 31(C), pages 739-751.
    19. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    20. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.

    More about this item

    Keywords

    curva de rendimientos; Nelson-Siegel; Svensson; regresión Kernel; splines suavizados; polinomios locales; supersuavizador de Friedmann; polinomios trigonométricos; redes neuronales.;
    All these keywords.

    JEL classification:

    • C29 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Other
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000093:004838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Facultad de Ciencias Economicas Unal (email available below). General contact details of provider: https://edirc.repec.org/data/funalco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.