[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ces/ifosdt/v59y2006i22p19-26.html
   My bibliography  Save this article

Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur

Author

Listed:
  • Klaus Abberger
  • Klaus Wohlrabe
Abstract
Das ifo Geschäftsklima ist ein viel beachteter Indikator für die konjunkturelle Entwicklung in Deutschland. Es ist daher auch immer wieder Gegenstand von wissenschaftlichen Analysen, in denen verschiedene Eigenschaften des Geschäftsklimas untersucht werden. Im Zentrum des Interesses steht dabei häufig die Verwendung des Indikators zu Prognosezwecken. So widmet etwa der Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung in seinem Jahresgutachten 2006/2007 dem ifo Geschäftsklima einen Abschnitt. Der vorliegende Aufsatz stellt einen kurzen Literaturüberblick über die wissenschaftlichen Aufsätze der letzten Jahre dar, die sich mit der Prognosequalität des ifo Geschäftsklimas beschäftigt haben. Ein Blick in die wissenschaftliche Literatur zeigt, dass die verwendeten Methoden und Referenzreihen sich durchaus unterscheiden. Je nach Untersuchungsanordnung fällt die Bewertung eines Indikators unterschiedlich aus. Zum ifo Geschäftsklima existiert eine Vielzahl von wissenschaftlichen Untersuchungen, die zeigen, dass dieser Indikator für viele Problemfelder der Konjunkturanalyse gewinnbringend eingesetzt werden kann. Diese Vielseitigkeit gepaart mit dem transparenten Konstruktionsprinzip sind sicherlich wesentliche Gründe für die Popularität des Geschäftsklimas. Man sollte jedoch bei der Verallgemeinerung einzelner Studienergebnisse nicht vergessen, dass jede einzelne Untersuchung sich auf ein relativ enges Studiendesign beschränkt, und sollte deshalb nicht aus jeder einzelnen Analyse auf die generelle "Prognosefähigkeit" der Indikatoren schließen.

Suggested Citation

  • Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
  • Handle: RePEc:ces:ifosdt:v:59:y:2006:i:22:p:19-26
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/ifosd_2006_22_2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan-Egbert Sturm & Timo Wollmershäuser (ed.), 2005. "Ifo Survey Data in Business Cycle and Monetary Policy Analysis," Contributions to Economics, Springer, number 978-3-7908-1605-1, December.
    2. Christian Dreger & Christian Schumacher, 2005. "Out-of-sample Performance of Leading Indicators for the German Business Cycle: Single vs. Combined Forecasts," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(1), pages 71-87.
    3. Erich Langmantel, 1999. "Das ifo Geschäftsklima als Indikator für die Prognose des Bruttoinlandsprodukts," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 52(16-17), pages 16-21, October.
    4. Wolfgang Nierhaus, 1999. "Aus dem Instrumentenkasten der Konjunkturanalyse : Veränderungen im Vergleich," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 52(27), pages 11-19, October.
    5. Kholodilin Konstantin Arkadievich & Siliverstovs Boriss, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 226(3), pages 234-259, June.
    6. Jan Jacobs & Jan-Egbert Sturm, 2005. "Do Ifo Indicators Help Explain Revisions in German Industrial Production?," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 93-114, Springer.
    7. Schumacher, Christian & Breitung, Jörg, 2006. "Real-time forecasting of GDP based on a large factor model with monthly and quarterly data," Discussion Paper Series 1: Economic Studies 2006,33, Deutsche Bundesbank.
    8. Klaus Abberger, 2006. "ifo Geschäftsklima und Produktionsindex im verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(21), pages 42-45, November.
    9. Claveria, Oscar & Pons, Ernest & Ramos, Raul, 2007. "Business and consumer expectations and macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 47-69.
    10. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    11. Dreger, Christian & Schumacher, Christian, 2002. "Estimating Large-Scale Factor Models for Economic Activity in Germany: Do They Outperform Simpler Models?," Discussion Paper Series 26321, Hamburg Institute of International Economics.
    12. Stefan Mittnik & Peter Zadrozny, 2005. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly Ifo Business Conditions Data," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 19-48, Springer.
    13. Fritsche Ulrich & Stephan Sabine, 2002. "Leading Indicators of German Business Cycles. An Assessment of Properties / Frühindikatoren der deutschen Konjunktur. Eine Beurteilung ihrer Eigenschaften," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(3), pages 289-315, June.
    14. Döpke, Jörg, 1999. "Predicting Germany's recessions with leading indicators: Evidence from probit models," Kiel Working Papers 944, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Abberger & Gebhard Flaig & Wolfgang Nierhaus, 2007. "ifo Konjunkturumfragen und Konjunkturanalyse : ausgewählte methodische Aufsätze aus dem ifo Schnelldienst," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 33, September.
    2. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
    3. Anna Sophia Ciesielski & Klaus Wohlrabe, 2011. "Sektorale Prognosen im Verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 64(22), pages 27-35, November.
    4. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
    5. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, September.
    6. repec:jns:jbstat:v:227:y:2007:i:1:p:87-101 is not listed on IDEAS
    7. Klaus Abberger & Sascha Becker & Barbara Hofmann & Klaus Wohlrabe, 2007. "Mikrodaten im ifo Institut für Wirtschaftsforschung – Bestand, Verwendung und Zugang," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 1(1), pages 27-42, June.
    8. Sascha O. Becker & Klaus Wohlrabe, 2008. "European Data Watch: Micro Data at the Ifo Institute for Economic Research – The “Ifo Business Survey”, Usage and Access," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 128(2), pages 307-319.
    9. Katja Heinisch & Rolf Scheufele, 2019. "Should Forecasters Use Real‐Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence," German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 170-200, November.
    10. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
    11. Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
    12. Heinisch, Katja, 2016. "A real-time analysis on the importance of hard and soft data for nowcasting German GDP," VfS Annual Conference 2016 (Augsburg): Demographic Change 145864, Verein für Socialpolitik / German Economic Association.
    13. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    14. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    15. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    16. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    17. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    18. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    19. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
    20. Abberger, Klaus, 2007. "Qualitative business surveys and the assessment of employment -- A case study for Germany," International Journal of Forecasting, Elsevier, vol. 23(2), pages 249-258.
    21. Kitlinski, Tobias, 2015. "With or without you: Do financial data help to forecast industrial production?," Ruhr Economic Papers 558, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    More about this item

    Keywords

    Prognose; Konjunkturindikator; Prognoseverfahren;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifosdt:v:59:y:2006:i:22:p:19-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.