[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v14y2018i2p29n1.html
   My bibliography  Save this article

A New Class of Robust Two-Sample Wald-Type Tests

Author

Listed:
  • Ghosh Abhik

    (Kolkata Interdisciplinary Statistical Research Unit 203, Indian Statistical Institute, B. T. Road, Kolkata- 700108, India)

  • Martin Nirian

    (Departamento de Estadistica e I.O., Complutense University of Madrid, II Avenida de Islas Filipinas 3, Madrid28003, Spain)

  • Basu Ayanendranath

    (Kolkata Interdisciplinary Statistical Research Unit 203, Indian Statistical Institute, B. T. Road, Kolkata- 700108, India)

  • Pardo Leandro

    (Departamento de Estadistica e I.O., Complutense University of Madrid, Plaza de Ciencias 3, Madrid28040, Spain)

Abstract
Parametric hypothesis testing associated with two independent samples arises frequently in several applications in biology, medical sciences, epidemiology, reliability and many more. In this paper, we propose robust Wald-type tests for testing such two sample problems using the minimum density power divergence estimators of the underlying parameters. In particular, we consider the simple two-sample hypothesis concerning the full parametric homogeneity as well as the general two-sample (composite) hypotheses involving some nuisance parameters. The asymptotic and theoretical robustness properties of the proposed Wald-type tests have been developed for both the simple and general composite hypotheses. Some particular cases of testing against one-sided alternatives are discussed with specific attention to testing the effectiveness of a treatment in clinical trials. Performances of the proposed tests have also been illustrated numerically through appropriate real data examples.

Suggested Citation

  • Ghosh Abhik & Martin Nirian & Basu Ayanendranath & Pardo Leandro, 2018. "A New Class of Robust Two-Sample Wald-Type Tests," The International Journal of Biostatistics, De Gruyter, vol. 14(2), pages 1-29, November.
  • Handle: RePEc:bpj:ijbist:v:14:y:2018:i:2:p:29:n:1
    DOI: 10.1515/ijb-2017-0023
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2017-0023
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2017-0023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    2. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    4. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    5. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    6. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Byungsoo Kim & Sangyeol Lee, 2020. "Robust estimation for general integer-valued time series models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1371-1396, December.
    8. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    9. Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
    10. W. V. Félix de Lima & A. D. C. Nascimento & G. J. A. Amaral, 2021. "Entropy-based pivotal statistics for multi-sample problems in planar shape," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 153-178, March.
    11. Chalabi, Yohan & Wuertz, Diethelm, 2012. "Portfolio optimization based on divergence measures," MPRA Paper 43332, University Library of Munich, Germany.
    12. G. Avlogiaris & A. C. Micheas & K. Zografos, 2019. "A Criterion for Local Model Selection," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 406-444, December.
    13. Broniatowski, Michel, 2014. "Minimum divergence estimators, maximum likelihood and exponential families," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 27-33.
    14. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
    15. Ayanendranath Basu & Abhik Ghosh & Abhijit Mandal & Nirian Martin & Leandro Pardo, 2021. "Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 973-1005, September.
    16. Diaa Al Mohamad, 2018. "Towards a better understanding of the dual representation of phi divergences," Statistical Papers, Springer, vol. 59(3), pages 1205-1253, September.
    17. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.
    18. Toma, Aida & Leoni-Aubin, Samuela, 2013. "Optimal robust M-estimators using Rényi pseudodistances," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 359-373.
    19. Ángel Felipe & María Jaenada & Pedro Miranda & Leandro Pardo, 2023. "Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing," Mathematics, MDPI, vol. 11(6), pages 1-41, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:14:y:2018:i:2:p:29:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.