[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/presci/v102y2023i3p635-672.html
   My bibliography  Save this article

Nonparametric prediction for univariate spatial data: Methods and applications

Author

Listed:
  • Rodrigo García Arancibia
  • Pamela Llop
  • Mariel Lovatto
Abstract
We introduce five nonparametric kriging‐type predictors for spatial data where only the variable of interest, without covariates, is recorded. The proposed methods seek to fully exploit the information contained in the spatial closeness and also in the similarity between neighbourhoods of the variable of interest. This is managed using different combinations of kernels (one or two kernels), and different combinations of distances (multiplicative and additive). The good performance of the proposed methods is shown via simulation studies and housing price prediction applications. Este estudio introduce cinco predictores no paramétricos de interpolación de tipo Kriging para datos espaciales en los que sólo se registra la variable de interés, sin covariables. Los métodos propuestos tratan de explotar al máximo la información contenida en la cercanía espacial y también en la similitud entre vecindarios de la variable de interés. Para ello se utilizan distintas combinaciones de núcleos (uno o dos núcleos) y distintas combinaciones de distancias (multiplicativas y aditivas). El buen desempeño de los métodos propuestos se demuestra mediante estudios de simulación y aplicaciones para la predicción del precio de la vivienda. 関心のある変数のみが共変量を含まずに記録される、空間データを分析する5つのノンパラメトリック・クリギング法タイプの予測因子を導入する。この方法は、空間的近接性及び関心のある変数の近似値間の類似性に含まれる情報を十分に活用しようとするものである。これは、異なるカーネルの組み合わせ(1つまたは2つのカーネル)、および異なる距離の組み合わせ(乗法と加法)を使用して実施される。提案した方法は、シミュレーション研究と住宅価格予測への応用では、良好な性能が示された。

Suggested Citation

  • Rodrigo García Arancibia & Pamela Llop & Mariel Lovatto, 2023. "Nonparametric prediction for univariate spatial data: Methods and applications," Papers in Regional Science, Wiley Blackwell, vol. 102(3), pages 635-672, June.
  • Handle: RePEc:bla:presci:v:102:y:2023:i:3:p:635-672
    DOI: 10.1111/pirs.12735
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/pirs.12735
    Download Restriction: no

    File URL: https://libkey.io/10.1111/pirs.12735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Banerjee S. & Gelfand A.E. & Knight J.R. & Sirmans C.F., 2004. "Spatial Modeling of House Prices Using Normalized Distance-Weighted Sums," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 206-213, April.
    2. Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey, 2004. "Econometrics for Spatial Models: Recent Advances," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 1, pages 1-25, Springer.
    3. Srini Vasan & Adelamar Alcantara, 2016. "GIS-based Methods for Estimating Missing Poverty Rates & Projecting Future Rates in Census Tracts," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 1-13, August.
    4. José-María Montero & Román Mínguez & Gema Fernández-Avilés, 2018. "Erratum to: Housing price prediction: parametric versus semi-parametric spatial hedonic models," Journal of Geographical Systems, Springer, vol. 20(1), pages 107-109, January.
    5. Steve Bradley & Giuseppe Migali & Maria Navarro Paniagua, 2020. "Spatial variations and clustering in the rates of youth unemployment and NEET: A comparative analysis of Italy, Spain, and the UK," Journal of Regional Science, Wiley Blackwell, vol. 60(5), pages 1074-1107, November.
    6. Bing Zhu & Roland Füss & Nico Rottke, 2011. "The Predictive Power of Anisotropic Spatial Correlation Modeling in Housing Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 42(4), pages 542-565, May.
    7. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    8. Catherine Baumont, 2009. "Spatial effects of urban public policies on housing values," Papers in Regional Science, Wiley Blackwell, vol. 88(2), pages 301-326, June.
    9. David C. Wheeler & Antonio Páez & Jamie Spinney & Lance A. Waller, 2014. "A Bayesian approach to hedonic price analysis," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 663-683, August.
    10. Morito Tsutsumi & Hajime Seya, 2008. "Measuring the impact of large‐scale transportation projects on land price using spatial statistical models," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 385-401, August.
    11. Yong Tu & Hua Sun & Shi-Ming Yu, 2007. "Spatial Autocorrelations and Urban Housing Market Segmentation," The Journal of Real Estate Finance and Economics, Springer, vol. 34(3), pages 385-406, April.
    12. Sophie Dabo-Niang & Camille Ternynck & Anne-Françoise Yao, 2016. "Nonparametric prediction of spatial multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 428-458, June.
    13. Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
    14. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    15. Gillen, Kevin & Thibodeau, Thomas & Wachter, Susan, 2001. "Anisotropic Autocorrelation in House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 23(1), pages 5-30, July.
    16. Katarzyna Kopczewska, 2022. "Spatial machine learning: new opportunities for regional science," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 713-755, June.
    17. José-María Montero & Román Mínguez & Gema Fernández-Avilés, 2018. "Housing price prediction: parametric versus semi-parametric spatial hedonic models," Journal of Geographical Systems, Springer, vol. 20(1), pages 27-55, January.
    18. Dubin, Robin A., 1992. "Spatial autocorrelation and neighborhood quality," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 433-452, September.
    19. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    20. Mahdieh Yazdani, 2021. "Machine Learning, Deep Learning, and Hedonic Methods for Real Estate Price Prediction," Papers 2110.07151, arXiv.org.
    21. Marc Hallin & Michel Carbon & Lanh T. Tran, 1996. "Kernel density estimation on random fields: the L1 theory," ULB Institutional Repository 2013/2065, ULB -- Universite Libre de Bruxelles.
    22. Giuseppe Arbia & Marco Bee & Giuseppe Espa, 2013. "Testing Isotropy in Spatial Econometric Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 228-240, September.
    23. María Hierro & Adolfo Maza & José Villaverde, 2013. "A proposal for detecting spatial contagion: Some evidence on the international migration distribution in Spain," Papers in Regional Science, Wiley Blackwell, vol. 92(4), pages 811-829, November.
    24. Raquel Menezes & Pilar García-Soidán & Célia Ferreira, 2010. "Nonparametric spatial prediction under stochastic sampling design," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(3), pages 363-377.
    25. Isabelle M. Nilsson & Oleg A. Smirnov, 2017. "Clustering vs. relative location: Measuring spatial interaction between retail outlets," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 721-741, November.
    26. James Valente & ShanShan Wu & Alan Gelfand & C.F. Sirmans, 2005. "Apartment Rent Prediction Using Spatial Modeling," Journal of Real Estate Research, American Real Estate Society, vol. 27(1), pages 105-136.
    27. Isabelle Nilsson & Oleg Smirnov & Neil Reid & Matthew Lehnert, 2019. "To cluster or not to cluster? Spatial determinants of closures in the American craft brewing industry," Papers in Regional Science, Wiley Blackwell, vol. 98(4), pages 1759-1778, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Chica-Olmo & Rafael Cano-Guervos & Mario Chica-Rivas, 2019. "Estimation of Housing Price Variations Using Spatio-Temporal Data," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    2. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    3. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    4. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    5. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    6. Fritsch, Markus & Haupt, Harry & Ng, Pin T., 2016. "Urban house price surfaces near a World Heritage Site: Modeling conditional price and spatial heterogeneity," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 260-275.
    7. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    8. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    9. Alice Barreca & Rocco Curto & Diana Rolando, 2020. "Urban Vibrancy: An Emerging Factor that Spatially Influences the Real Estate Market," Sustainability, MDPI, vol. 12(1), pages 1-23, January.
    10. Sophie Dabo-Niang & Sidi Ould-Abdi & Ahmedoune Ould-Abdi & Aliou Diop, 2014. "Consistency of a nonparametric conditional mode estimator for random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 1-39, March.
    11. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.
    12. Bello Musa Zango & Sanni Mohammed Lekan & Mohammed Jibrin Katun, 2020. "Conventional Methods in Housing Market Analysis: A Review of Literature," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 8(1), pages 227-241, January.
    13. Trojanek, Radoslaw & Huderek-Glapska, Sonia, 2018. "Measuring the noise cost of aviation – The association between the Limited Use Area around Warsaw Chopin Airport and property values," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 103-114.
    14. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    15. Ahmad Younso, 2023. "On the consistency of mode estimate for spatially dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 343-372, April.
    16. Sanglim Yoo & John E. Wagner, 2016. "A review of the hedonic literatures in environmental amenities from open space: a traditional econometric vs. spatial econometric model," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(1), pages 141-166, March.
    17. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    18. Marko Kryvobokov, 2011. "Defining apartment neighbourhoods with Thiessen polygons and fuzzy equality clustering," ERES eres2011_142, European Real Estate Society (ERES).
    19. Nakamura, Hiroki, 2020. "Evaluating the value of an entrepreneurial city with a spatial hedonic approach: A case study of London," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    20. Prodosh Simlai, 2018. "Spatial Dependence, Idiosyncratic Risk, and the Valuation of Disaggregated Housing Data," The Journal of Real Estate Finance and Economics, Springer, vol. 57(2), pages 192-230, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:presci:v:102:y:2023:i:3:p:635-672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1056-8190 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.