[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v33y2023i2p257-273.html
   My bibliography  Save this article

A model‐free approach to continuous‐time finance

Author

Listed:
  • Henry Chiu
  • Rama Cont
Abstract
We present a pathwise approach to continuous‐time finance based on causal functional calculus. Our framework does not rely on any probabilistic concept. We introduce a definition of continuous‐time self‐financing portfolios, which does not rely on any integration concept and show that the value of a self‐financing portfolio belongs to a class of nonanticipative functionals, which are pathwise analogs of martingales. We show that if the set of market scenarios is generic in the sense of being stable under certain operations, such self‐financing strategies do not give rise to arbitrage. We then consider the problem of hedging a path‐dependent payoff across a generic set of scenarios. Applying the transition principle of Rufus Isaacs in differential games, we obtain a pathwise dynamic programming principle for the superhedging cost. We show that the superhedging cost is characterized as the solution of a path‐dependent equation. For the Asian option, we obtain an explicit solution.

Suggested Citation

  • Henry Chiu & Rama Cont, 2023. "A model‐free approach to continuous‐time finance," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 257-273, April.
  • Handle: RePEc:bla:mathfi:v:33:y:2023:i:2:p:257-273
    DOI: 10.1111/mafi.12370
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12370
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    2. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    3. Bick, Avi & Willinger, Walter, 1994. "Dynamic spanning without probabilities," Stochastic Processes and their Applications, Elsevier, vol. 50(2), pages 349-374, April.
    4. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.
    5. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    6. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    7. Bruno Dupire, 2019. "Functional Itô calculus," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 721-729, May.
    8. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    9. Hans Follmer & Alexander Schied, 2013. "Probabilistic aspects of finance," Papers 1309.7759, arXiv.org.
    10. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    11. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S'ebastien Bossu & St'ephane Cr'epey & Hoang-Dung Nguyen, 2024. "Spanning Multi-Asset Payoffs With ReLUs," Papers 2403.14231, arXiv.org, revised Dec 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henry Chiu & Rama Cont, 2022. "A model-free approach to continuous-time finance," Papers 2211.15531, arXiv.org.
    2. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    3. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    4. Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
    5. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    6. Bruno Bouchard & Xiaolu Tan, 2021. "A quasi-sure optional decomposition and super-hedging result on the Skorokhod space," Finance and Stochastics, Springer, vol. 25(3), pages 505-528, July.
    7. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    8. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.
    9. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.
    10. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2021. "Neural network approximation for superhedging prices," Papers 2107.14113, arXiv.org.
    11. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2021. "Duality theory for robust utility maximisation," Finance and Stochastics, Springer, vol. 25(3), pages 469-503, July.
    12. Huy N. Chau & Masaaki Fukasawa & Miklos Rasonyi, 2021. "Super-replication with transaction costs under model uncertainty for continuous processes," Papers 2102.02298, arXiv.org.
    13. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2023. "Neural network approximation for superhedging prices," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 146-184, January.
    14. Huy N. Chau & Masaaki Fukasawa & Miklós Rásonyi, 2022. "Super‐replication with transaction costs under model uncertainty for continuous processes," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1066-1085, October.
    15. Hölzermann, Julian & Lin, Qian, 2019. "Term Structure Modeling under Volatility Uncertainty: A Forward Rate Model driven by G-Brownian Motion," Center for Mathematical Economics Working Papers 613, Center for Mathematical Economics, Bielefeld University.
    16. Francesca Biagini & Thomas Reitsam, 2021. "A dynamic version of the super-replication theorem under proportional transaction costs," Papers 2107.02628, arXiv.org.
    17. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    18. Huy N. Chau, 2020. "On robust fundamental theorems of asset pricing in discrete time," Papers 2007.02553, arXiv.org, revised Apr 2024.
    19. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.
    20. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:33:y:2023:i:2:p:257-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.