[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v14y2004i2p173-200.html
   My bibliography  Save this article

Stochastic Volatility Corrections for Interest Rate Derivatives

Author

Listed:
  • Peter Cotton
  • Jean‐Pierre Fouque
  • George Papanicolaou
  • Ronnie Sircar
Abstract
We study simple models of short rates such as the Vasicek or CIR models, and compute corrections that come from the presence of fast mean‐reverting stochastic volatility. We show how these small corrections can affect the shape of the term structure of interest rates giving a simple and efficient calibration tool. This is used to price other derivatives such as bond options. The analysis extends the asymptotic method developed for equity derivatives in Fouque, Papanicolaou, and Sircar (2000b). The assumptions and effectiveness of the theory are tested on yield curve data.

Suggested Citation

  • Peter Cotton & Jean‐Pierre Fouque & George Papanicolaou & Ronnie Sircar, 2004. "Stochastic Volatility Corrections for Interest Rate Derivatives," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 173-200, April.
  • Handle: RePEc:bla:mathfi:v:14:y:2004:i:2:p:173-200
    DOI: 10.1111/j.0960-1627.2004.00188.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0960-1627.2004.00188.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0960-1627.2004.00188.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Pierre Fouque & Sebastian Jaimungal & Yuri F. Saporito, 2021. "Optimal Trading with Signals and Stochastic Price Impact," Papers 2101.10053, arXiv.org, revised Aug 2023.
    2. Laurini, Márcio P. & Caldeira, João F., 2016. "A macro-finance term structure model with multivariate stochastic volatility," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 68-90.
    3. Jean-Pierre Fouque & Yuri F. Saporito & Jorge P. Zubelli, 2013. "Multiscale Stochastic Volatility Model for Derivatives on Futures," Papers 1311.4249, arXiv.org.
    4. Kyo Yamamoto & Akihiko Takahashi, 2009. "A Remark on a Singular Perturbation Method for Option Pricing Under a Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(4), pages 333-345, December.
    5. Max O. Souza & Jorge P. Zubelli, 2007. "On The Asymptotics Of Fast Mean-Reversion Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(05), pages 817-835.
    6. Jean-Pierre Fouque & Matthew Lorig, 2010. "A Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model," Papers 1007.4366, arXiv.org, revised Apr 2012.
    7. Chi, Yichun & Jaimungal, Sebastian & Lin, X. Sheldon, 2010. "An insurance risk model with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 52-66, February.
    8. Hoi Ying Wong & Chun Man Chan, 2008. "Turbo warrants under stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 739-751.
    9. Wong, Hoi Ying & Chan, Chun Man, 2007. "Lookback options and dynamic fund protection under multiscale stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 357-385, May.
    10. Lee, Sangwook & Kim, Min Jae & Kim, Soo Yong, 2011. "Interest rates factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2531-2548.
    11. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    12. Matthew Lorig, 2011. "Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach," Papers 1109.0738, arXiv.org, revised Apr 2012.
    13. Eusebio Valero & Manuel Torrealba & Lucas Lacasa & Franc{c}ois Fraysse, 2011. "Fast resolution of a single factor Heath-Jarrow-Morton model with stochastic volatility," Papers 1108.1688, arXiv.org.
    14. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    15. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:14:y:2004:i:2:p:173-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.