One of the most cited studies within the field of binary choice models is that of Klein and Spady (1993), in which the authors propose a semiparametric estimator for use when the distribution of the error term is unknown. However, although theoretically appealing, the estimator has been found to be difficult to implement, and therefore not very attractive from an applied point of view. The current study offers an indirect inference-based solution to this problem. The new estimator is not only simple with good small-sample properties, but also consistent and asymptotically normal."> One of the most cited studies within the field of binary choice models is that of Klein and Spady (1993), in which the authors propose a semiparametric estimator for use when the distribution of the error term is unknown. However, although theoretically appealing, the estimator has been found to be difficult to implement, and therefore not very attractive from an applied point of view. The current study offers an indirect inference-based solution to this problem. The new estimator is not only simple with good small-sample properties, but also consistent and asymptotically normal."> One of the most cited studies within the field of binary choice models is that of Klein and Spady (1993), in which the authors propose a semiparametric ">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v76y2014i2p298-314.html
   My bibliography  Save this article

Indirect Estimation of Semiparametric Binary Choice Models

Author

Listed:
  • Joakim Westerlund
  • Per Hjertstrand
Abstract
type="main" xml:lang="en"> One of the most cited studies within the field of binary choice models is that of Klein and Spady (1993), in which the authors propose a semiparametric estimator for use when the distribution of the error term is unknown. However, although theoretically appealing, the estimator has been found to be difficult to implement, and therefore not very attractive from an applied point of view. The current study offers an indirect inference-based solution to this problem. The new estimator is not only simple with good small-sample properties, but also consistent and asymptotically normal.

Suggested Citation

  • Joakim Westerlund & Per Hjertstrand, 2014. "Indirect Estimation of Semiparametric Binary Choice Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 298-314, April.
  • Handle: RePEc:bla:obuest:v:76:y:2014:i:2:p:298-314
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/obes.12000
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naércio Aquino Menezes-Filho & Marc-Andreas Muendler & Garey Ramey, 2008. "The Structure of Worker Compensation in Brazil, with a Comparison to France and the United States," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 324-346, May.
    2. Fermanian, Jean-David & Salanié, Bernard, 2004. "A Nonparametric Simulated Maximum Likelihood Estimation Method," Econometric Theory, Cambridge University Press, vol. 20(4), pages 701-734, August.
    3. Rothe, Christoph, 2009. "Semiparametric estimation of binary response models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 153(1), pages 51-64, November.
    4. Giuseppe De Luca, 2008. "SNP and SML estimation of univariate and bivariate binary-choice models," Stata Journal, StataCorp LP, vol. 8(2), pages 190-220, June.
    5. Maria Fraga O. Martins, 2001. "Parametric and semiparametric estimation of sample selection models: an empirical application to the female labour force in Portugal," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(1), pages 23-39.
    6. Gerfin, Michael, 1996. "Parametric and Semi-parametric Estimation of the Binary Response Model of Labor Market Participation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 321-339, May-June.
    7. Chen, Songnian, 2000. "Efficient estimation of binary choice models under symmetry," Journal of Econometrics, Elsevier, vol. 96(1), pages 183-199, May.
    8. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    9. Mealli, Fabrizia & Rampichini, Carla, 1999. "Estimating binary multilevel models through indirect inference," Computational Statistics & Data Analysis, Elsevier, vol. 29(3), pages 313-324, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    2. P Čížek & S Sadıkoğlu, 2022. "Misclassification-robust semiparametric estimation of single-index binary-choice models [Local NLLS estimation of semi-parametric binary choice models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 433-454.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinthya G. Caamal Olvera, 2017. "Decreasing returns to schooling in Mexico," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 32(1), pages 27-63.
    2. Pigini Claudia, 2015. "Bivariate Non-Normality in the Sample Selection Model," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 123-144, January.
    3. Fernández-Sainz, Ana I. & Rodríguez-Póo, Juan M., 2010. "An Empirical Investigation of Parametric and Semiparametric Estimation Methods in Sample Selection Models = Investigación empírica de métodos de estimación paramétricos y semiparamétricos de modelos d," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 10(1), pages 99-120, December.
    4. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    5. Töpfer, Marina, 2017. "Detailed RIF decomposition with selection: The gender pay gap in Italy," Hohenheim Discussion Papers in Business, Economics and Social Sciences 26-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    6. Mamine, Fateh & Fares, M'hand & Minviel, Jean Joseph, 2020. "Contract Design for Adoption of Agrienvironmental Practices: A Meta-analysis of Discrete Choice Experiments," Ecological Economics, Elsevier, vol. 176(C).
    7. Bergtold, Jason S. & Ramsey, Steven M., 2015. "Neural Network Estimators of Binary Choice Processes: Estimation, Marginal Effects and WTP," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205649, Agricultural and Applied Economics Association.
    8. Biavaschi, Costanza, 2016. "Recovering the counterfactual wage distribution with selective return migration," Labour Economics, Elsevier, vol. 38(C), pages 59-80.
    9. Töpfer, Marina, 2017. "Detailed RIF Decomposition with Selection - The Gender Pay Gap in Italy," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168422, Verein für Socialpolitik / German Economic Association.
    10. Elia Lapenta, 2022. "A Bootstrap Specification Test for Semiparametric Models with Generated Regressors," Papers 2212.11112, arXiv.org, revised Oct 2023.
    11. Ilhom Abdulloev, 2018. "Job dissatisfaction and migration: evidence from Tajikistan," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 8(1), pages 1-27, December.
    12. Christian Dustmann, 2014. "Selective Outmigration and the Estimation of Immigrants Earnings Profiles," RF Berlin - CReAM Discussion Paper Series 1402, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
    13. Dong, Yingying, 2010. "Endogenous regressor binary choice models without instruments, with an application to migration," Economics Letters, Elsevier, vol. 107(1), pages 33-35, April.
    14. Giuseppe De Luca, 2008. "SNP and SML estimation of univariate and bivariate binary-choice models," Stata Journal, StataCorp LP, vol. 8(2), pages 190-220, June.
    15. Hung‐Hao Chang & David R. Just, 2009. "Internet Access and Farm Household Income – Empirical Evidence using a Semi‐parametric Assessment in Taiwan," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(2), pages 348-366, June.
    16. Ker, Alan P. & Ergun, A. Tolga, 2003. "On The Revelation Of Asymmetric Information Of The Private Insurance Companies In The Us Crop Insurance Program," 2003 Annual meeting, July 27-30, Montreal, Canada 21898, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    17. Mark J. Garmaise & Tobias J. Moskowitz, 2002. "Informal Financial Networks: Theory and Evidence," NBER Working Papers 8874, National Bureau of Economic Research, Inc.
    18. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    19. Bakucs, Lajos Zoltan & Falkowski, Jan & Ferto, Imre, 2012. "What causes asymmetric price transmission in agro-food sector? Meta-analysis perspective," 86th Annual Conference, April 16-18, 2012, Warwick University, Coventry, UK 134765, Agricultural Economics Society.
    20. Jonathan A. Cook & Saad Siddiqui, 2020. "Random forests and selected samples," Bulletin of Economic Research, Wiley Blackwell, vol. 72(3), pages 272-287, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:76:y:2014:i:2:p:298-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.