Do fast, competitive markets yield liquidity measurement problems when using the popular Monthly Trade and Quote (MTAQ) database? Yes. MTAQ yields distorted measures of spreads, trade location, and price impact compared with the expensive Daily Trade and Quote (DTAQ) database. These problems are driven by (1) withdrawn quotes, (2) second (versus millisecond) time stamps, and (3) other causes, including canceled quotes. The expensive solution, using DTAQ, is first-best. For financially constrained researchers, the cheap solution—using MTAQ with our new Interpolated Time technique, adjusting for withdrawn quotes, and deleting economically nonsensical states—is second-best. These solutions change research inferences."> Do fast, competitive markets yield liquidity measurement problems when using the popular Monthly Trade and Quote (MTAQ) database? Yes. MTAQ yields distorted measures of spreads, trade location, and price impact compared with the expensive Daily Trade and Quote (DTAQ) database. These problems are driven by (1) withdrawn quotes, (2) second (versus millisecond) time stamps, and (3) other causes, including canceled quotes. The expensive solution, using DTAQ, is first-best. For financially constrained researchers, the cheap solution—using MTAQ with our new Interpolated Time technique, adjusting for withdrawn quotes, and deleting economically nonsensical states—is second-best. These solutions change research inferences."> Do fast, competitive markets yield liquidity measurement problems when using the popular Monthly Trade and Quote (MTAQ) database? Yes. MTAQ yields distorted measures of spreads">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/jfinan/v69y2014i4p1747-1785.html
   My bibliography  Save this article

Liquidity Measurement Problems in Fast, Competitive Markets: Expensive and Cheap Solutions

Author

Listed:
  • CRAIG W. HOLDEN
  • STACEY JACOBSEN
Abstract
type="main"> Do fast, competitive markets yield liquidity measurement problems when using the popular Monthly Trade and Quote (MTAQ) database? Yes. MTAQ yields distorted measures of spreads, trade location, and price impact compared with the expensive Daily Trade and Quote (DTAQ) database. These problems are driven by (1) withdrawn quotes, (2) second (versus millisecond) time stamps, and (3) other causes, including canceled quotes. The expensive solution, using DTAQ, is first-best. For financially constrained researchers, the cheap solution—using MTAQ with our new Interpolated Time technique, adjusting for withdrawn quotes, and deleting economically nonsensical states—is second-best. These solutions change research inferences.

Suggested Citation

  • Craig W. Holden & Stacey Jacobsen, 2014. "Liquidity Measurement Problems in Fast, Competitive Markets: Expensive and Cheap Solutions," Journal of Finance, American Finance Association, vol. 69(4), pages 1747-1785, August.
  • Handle: RePEc:bla:jfinan:v:69:y:2014:i:4:p:1747-1785
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jofi.12127
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nimalendran, M. & Ritter, Jay R. & Zhang, Donghang, 2007. "Do today's trades affect tomorrow's IPO allocations?," Journal of Financial Economics, Elsevier, vol. 84(1), pages 87-109, April.
    2. Henker, Thomas & Wang, Jian-Xin, 2006. "On the importance of timing specifications in market microstructure research," Journal of Financial Markets, Elsevier, vol. 9(2), pages 162-179, May.
    3. Tarun Chordia & Richard Roll & Avanidhar Subrahmanyam, 2001. "Market Liquidity and Trading Activity," Journal of Finance, American Finance Association, vol. 56(2), pages 501-530, April.
    4. Bessembinder, Hendrik, 2003. "Issues in assessing trade execution costs," Journal of Financial Markets, Elsevier, vol. 6(3), pages 233-257, May.
    5. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    6. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Commonality in liquidity," Journal of Financial Economics, Elsevier, vol. 56(1), pages 3-28, April.
    7. Macey, Jonathan R. & O'Hara, Maureen, 1997. "The Law and Economics of Best Execution," Journal of Financial Intermediation, Elsevier, vol. 6(3), pages 188-223, July.
    8. Ekkehart Boehmer & Robert Jennings & Li Wei, 2007. "Public Disclosure and Private Decisions: Equity Market Execution Quality and Order Routing," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 315-358.
    9. Ellis, Katrina & Michaely, Roni & O'Hara, Maureen, 2000. "The Accuracy of Trade Classification Rules: Evidence from Nasdaq," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 529-551, December.
    10. Ho, Thomas S Y & Stoll, Hans R, 1983. "The Dynamics of Dealer Markets under Competition," Journal of Finance, American Finance Association, vol. 38(4), pages 1053-1074, September.
    11. Joel Hasbrouck, 2009. "Trading Costs and Returns for U.S. Equities: Estimating Effective Costs from Daily Data," Journal of Finance, American Finance Association, vol. 64(3), pages 1445-1477, June.
    12. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    13. Finucane, Thomas J., 2000. "A Direct Test of Methods for Inferring Trade Direction from Intra-Day Data," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 553-576, December.
    14. Peterson, Mark & Sirri, Erik, 2003. "Evaluation of the biases in execution cost estimation using trade and quote data," Journal of Financial Markets, Elsevier, vol. 6(3), pages 259-280, May.
    15. Qi Chen & Itay Goldstein & Wei Jiang, 2007. "Price Informativeness and Investment Sensitivity to Stock Price," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 619-650.
    16. Chakravarty, Sugato & Jain, Pankaj & Upson, James & Wood, Robert, 2012. "Clean Sweep: Informed Trading through Intermarket Sweep Orders," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(2), pages 415-435, April.
    17. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    18. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    19. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    20. David Easley & Robert F. Engle & Maureen O'Hara & Liuren Wu, 2008. "Time-Varying Arrival Rates of Informed and Uninformed Trades," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 171-207, Spring.
    21. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2002. "Order imbalance, liquidity, and market returns," Journal of Financial Economics, Elsevier, vol. 65(1), pages 111-130, July.
    22. Lee, Charles M. C. & Radhakrishna, Balkrishna, 2000. "Inferring investor behavior: Evidence from TORQ data," Journal of Financial Markets, Elsevier, vol. 3(2), pages 83-111, May.
    23. Odders-White, Elizabeth R., 2000. "On the occurrence and consequences of inaccurate trade classification," Journal of Financial Markets, Elsevier, vol. 3(3), pages 259-286, August.
    24. Pankaj K. Jain, 2005. "Financial Market Design and the Equity Premium: Electronic versus Floor Trading," Journal of Finance, American Finance Association, vol. 60(6), pages 2955-2985, December.
    25. Hendershott, Terrence & Moulton, Pamela C., 2011. "Automation, speed, and stock market quality: The NYSE's Hybrid," Journal of Financial Markets, Elsevier, vol. 14(4), pages 568-604, November.
    26. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    2. Bardong, Florian & Bartram, Söhnke M. & Yadav, Pradeep K., 2005. "Informed Trading, Information Asymmetry and Pricing of Information Risk: Empirical Evidence from the NYSE," MPRA Paper 13586, University Library of Munich, Germany, revised 10 Oct 2008.
    3. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    4. Arango, Ignacio & Agudelo, Diego A., 2019. "How does information disclosure affect liquidity? Evidence from an emerging market," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    5. Aktas, Osman Ulas & Kryzanowski, Lawrence, 2014. "Market impacts of trades for stocks listed on the Borsa Istanbul," Emerging Markets Review, Elsevier, vol. 20(C), pages 152-175.
    6. Ben Omrane, Walid & Welch, Robert, 2016. "Tick test accuracy in foreign exchange ECN markets," Research in International Business and Finance, Elsevier, vol. 37(C), pages 135-152.
    7. Georg Dettmann, 2011. "A View on Global Imbalances and their Contribution to the Financial Crisis," Birkbeck Working Papers in Economics and Finance 1102, Birkbeck, Department of Economics, Mathematics & Statistics.
    8. Dimitrios Karyampas & Paola Paiardini, 2011. "Probability of Informed Trading and Volatility for an ETF," Birkbeck Working Papers in Economics and Finance 1101, Birkbeck, Department of Economics, Mathematics & Statistics.
    9. Ignacio Arango & Diego A. Agudelo, 2017. "How does information disclosure affect liquidity?Evidence from an Emerging Market," Documentos de Trabajo de Valor Público 16990, Universidad EAFIT.
    10. Diego A. Agudelo & Ignacio Arango, 2017. "How does information disclosure affect liquidity? Evidence from an Emerging Market," Documentos de Trabajo de Valor Público 16944, Universidad EAFIT.
    11. Allen Carrion & Madhuparna Kolay, 2020. "Trade signing in fast markets," The Financial Review, Eastern Finance Association, vol. 55(3), pages 385-404, August.
    12. Mazza, Paolo, 2015. "Price dynamics and market liquidity: An intraday event study on Euronext," The Quarterly Review of Economics and Finance, Elsevier, vol. 56(C), pages 139-153.
    13. Lee, Yi-Tsung & Liu, Yu-Jane & Roll, Richard & Subrahmanyam, Avanidhar, 2001. "Order Imbalances and Market Efficiency: Evidence from the Taiwan Stock Exchange, Forthcoming in the Journal of Financial and Quantitative Analysis," University of California at Los Angeles, Anderson Graduate School of Management qt7w8106qn, Anderson Graduate School of Management, UCLA.
    14. Boehmer, Ekkehart & Grammig, Joachim & Theissen, Erik, 2007. "Estimating the probability of informed trading--does trade misclassification matter?," Journal of Financial Markets, Elsevier, vol. 10(1), pages 26-47, February.
    15. Yan, Yuxing & Zhang, Shaojun, 2014. "Quality of PIN estimates and the PIN-return relationship," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 137-149.
    16. Cenesizoglu, Tolga & Grass, Gunnar, 2018. "Bid- and ask-side liquidity in the NYSE limit order book," Journal of Financial Markets, Elsevier, vol. 38(C), pages 14-38.
    17. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    18. Múnera, Daimer J. & Agudelo, Diego A., 2022. "Who moved my liquidity? Liquidity evaporation in emerging markets in periods of financial uncertainty," Journal of International Money and Finance, Elsevier, vol. 129(C).
    19. Jurkatis, Simon, 2022. "Inferring trade directions in fast markets," Journal of Financial Markets, Elsevier, vol. 58(C).
    20. Sadka, Ronnie, 2006. "Momentum and post-earnings-announcement drift anomalies: The role of liquidity risk," Journal of Financial Economics, Elsevier, vol. 80(2), pages 309-349, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfinan:v:69:y:2014:i:4:p:1747-1785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/afaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.