Author
AbstractUnivariate continuous distributions have three possible types of support exemplified by: the whole real line, , the semi‐finite intervaland the bounded interval (0,1). This paper is about connecting distributions on these supports via ‘natural’ simple transformations in such a way that tail properties are preserved. In particular, this work is focussed on the case where the tails (at ±∞) of densities are heavy, decreasing as a (negative) power of their argument; connections are then especially elegant. At boundaries (0 and 1), densities behave conformably with a directly related dependence on power of argument. The transformation from (0,1) tois the standard odds transformation. The transformation fromtois a novel identity‐minus‐reciprocal transformation. The main points of contact with existing distributions are with the transformations involved in the Birnbaum–Saunders distribution and, especially, the Johnson family of distributions. Relationships between various other existing and newly proposed distributions are explored. Une loi de probabilité univariée peut être définie sur trois types de support, représentés par la droite des réels , la demi‐droite , et l'intervalle borné (0, 1). Ce papier met en rapport ces trois types de lois par des transformations simples et ‘naturelles’ de façon à préserver les propriétés de leurs queues. On considère plus particulièrement le cas où les queues aux limites ±∞ sont épaisses, leur taille décroissant selon une puissance négative de leur argument. Les interconnexions sont dans ce cas particulièrement élégantes. Ces types de loi sont conformes aux bornes 0 et 1, la probabilité de la queue variant selon une fonction de puissance. La transformation de l'intervalle (0, 1) en l'intervalle est la transformation odds usuelle. La transformation de en est une transformation nouvelle de type ‘identité moins réciproque’. Les principaux liens avec les lois de probabilité existantes sont mis en évidence par le biais des transformations relatives à la loi de Birnbaum–Saunders et, surtout, avec la famille des lois de Johnson. Quelques liens avec d'autres lois de probabilité, connues et nouvellement proposées, sont explorés.
Suggested Citation
M.C. Jones, 2007.
"Connecting Distributions with Power Tails on the Real Line, the Half Line and the Interval,"
International Statistical Review, International Statistical Institute, vol. 75(1), pages 58-69, April.
Handle:
RePEc:bla:istatr:v:75:y:2007:i:1:p:58-69
DOI: 10.1111/j.1751-5823.2007.00006.x
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- M. C. Jones, 2015.
"On Families of Distributions with Shape Parameters,"
International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
- J. Rosco & M. Jones & Arthur Pewsey, 2011.
"Skew t distributions via the sinh-arcsinh transformation,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 630-652, November.
- Jones, M.C., 2012.
"Relationships between distributions with certain symmetries,"
Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1737-1744.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:75:y:2007:i:1:p:58-69. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.