[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/aes/amfeco/v23y2021i57p517.html
   My bibliography  Save this article

Inflation Forecasting in the Western Balkans and EU: A Comparison of Holt-Winters, ARIMA and NNAR Models

Author

Listed:
  • Vesna Karadzic

    (University of Montenegro, Podgorica, Montenegro)

  • Bojan Pejovic

    (University of Montenegro, Podgorica, Montenegro)

Abstract
The purpose of this paper is to compare the accuracy of the three types of models: Autoregressive Integrated Moving Average (ARIMA) models, Holt-Winters models and Neural Network Auto-Regressive (NNAR) models in forcasting the Harmonized Index of Consumer Prices (HICP) for the countries of European Union and the Western Balkans (Montenegro, Serbia and Northern Macedonia). The models are compared based on the values of ME, RMSE, MAE, MPE, MAPE, MASE and Theil's U for the out-of-sample forecast. The key finding of this paper is that NNAR models give the most accurate forecast for the Western Balkans countries while ARIMA model gives the most accurate forecast of twelve-month inflation in EU countries. The Holt-Winters (additive and multiplicative) method proved to be the second best method in case of both group of countries. The obtained results correspond to the fact that the European Union has been implementing a policy of strict inflation targeting for a long time, so the ARIMA models give the most accurate forecast of inflation future values. In the countries of the Western Balkans the targeting policy is not implemented in the same way and the NNAR models are better for inflation forecasting.

Suggested Citation

  • Vesna Karadzic & Bojan Pejovic, 2021. "Inflation Forecasting in the Western Balkans and EU: A Comparison of Holt-Winters, ARIMA and NNAR Models," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 23(57), pages 517-517.
  • Handle: RePEc:aes:amfeco:v:23:y:2021:i:57:p:517
    as

    Download full text from publisher

    File URL: http://www.amfiteatrueconomic.ro/temp/Article_3014.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Golinelli & Renzo Orsi, 2002. "Modelling Inflation in EU Accession Countries: The Case of the Czech Republic, Hungary and Poland," Eastward Enlargement of the Euro-zone Working Papers wp09, Free University Berlin, Jean Monnet Centre of Excellence, revised 01 Aug 2002.
    2. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    3. repec:onb:oenbwp:y::i:73:b:1 is not listed on IDEAS
    4. Andreja Pufnik & Davor Kunovac, 2006. "Short-Term Forecasting of Inflation in Croatia with Seasonal ARIMA Processes," Working Papers 16, The Croatian National Bank, Croatia.
    5. McAdam, Peter & McNelis, Paul, 2005. "Forecasting inflation with thick models and neural networks," Economic Modelling, Elsevier, vol. 22(5), pages 848-867, September.
    6. Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998. "Forecasting Irish inflation using ARIMA models," Research Technical Papers 3/RT/98, Central Bank of Ireland.
    7. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    8. Guido Ascari & Argia M. Sbordone, 2014. "The Macroeconomics of Trend Inflation," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 679-739, September.
    9. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    10. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    11. Friedrich Fritzer & Gabriel Moser & Johann Scharler, 2002. "Forecasting Austrian HICP and its Components using VAR and ARIMA Models," Working Papers 73, Oesterreichische Nationalbank (Austrian Central Bank).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasrina Mustafa & Fahri Ahmed & Waffa Wahida Zainol & Azlizan Mat Enh, 2021. "Forecasting the Impact of Gross Domestic Product (GDP) on International Tourist Arrivals to Langkawi, Malaysia: A PostCOVID-19 Future," Sustainability, MDPI, vol. 13(23), pages 1-16, December.
    2. Kazimierz Kawa & Rafał Mularczyk & Waldemar Bauer & Katarzyna Grobler-Dębska & Edyta Kucharska, 2024. "Prediction of Energy Consumption on Example of Heterogenic Commercial Buildings," Energies, MDPI, vol. 17(13), pages 1-16, June.
    3. Abir HASSAN & Mahbubul Md. ALAM & Azmaine FAEIQUE, 2023. "Forecasting Monthly Inflation in Bangladesh: A Seasonal Autoregressive Moving Average (SARIMA) Approach," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 7(2), pages 25-43.
    4. Nikola Mišnić & Bojan Pejović & Jelena Jovović & Sunčica Rogić & Vladimir Đurišić, 2022. "The Economic Viability of PV Power Plant Based on a Neural Network Model of Electricity Prices Forecast: A Case of a Developing Market," Energies, MDPI, vol. 15(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    3. Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
    4. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    5. Irene Mariñas-Collado & Ana E. Sipols & M. Teresa Santos-Martín & Elisa Frutos-Bernal, 2022. "Clustering and Forecasting Urban Bus Passenger Demand with a Combination of Time Series Models," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    6. Roma, Moreno & Skudelny, Frauke & Benalal, Nicholai & Diaz del Hoyo, Juan Luis & Landau, Bettina, 2004. "To aggregate or not to aggregate? Euro area inflation forecasting," Working Paper Series 374, European Central Bank.
    7. Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
    8. Costache, Mioara & Sebastian Cristea, Dragos & Petrea, Stefan-Mihai & Neculita, Mihaela & Rahoveanu, Maria Magdalena Turek & Simionov, Ira-Adeline & Mogodan, Alina & Sarpe, Daniela & Rahoveanu, Adrian, 2021. "Integrating aquaponics production systems into the Romanian green procurement network," Land Use Policy, Elsevier, vol. 108(C).
    9. Andrea Kolková & Petr Rozehnal, 2022. "Hybrid demand forecasting models: pre-pandemic and pandemic use studies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 699-725, September.
    10. Benedict J. Drasch & Gilbert Fridgen & Lukas Häfner, 2020. "Demand response through automated air conditioning in commercial buildings—a data-driven approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 1491-1525, November.
    11. Feng Xu & Mohamad Sepehri & Jian Hua & Sergey Ivanov & Julius N. Anyu, 2018. "Time-Series Forecasting Models for Gasoline Prices in China," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(12), pages 1-43, December.
    12. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    13. Veiga, Claudimar Pereira da & Veiga, Cássia Rita Pereira da & Puchalski, Weslly & Coelho, Leandro dos Santos & Tortato, Ubiratã, 2016. "Demand forecasting based on natural computing approaches applied to the foodstuff retail segment," Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), pages 174-181.
    14. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
    15. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    16. Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
    17. Andreja Pufnik & Davor Kunovac, 2006. "Short-Term Forecasting of Inflation in Croatia with Seasonal ARIMA Processes," Working Papers 16, The Croatian National Bank, Croatia.
    18. McKenzie, Eddie & Gardner Jr., Everette S., 2010. "Damped trend exponential smoothing: A modelling viewpoint," International Journal of Forecasting, Elsevier, vol. 26(4), pages 661-665, October.
    19. Zhen Zeng & Rachneet Kaur & Suchetha Siddagangappa & Saba Rahimi & Tucker Balch & Manuela Veloso, 2023. "Financial Time Series Forecasting using CNN and Transformer," Papers 2304.04912, arXiv.org.
    20. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.

    More about this item

    Keywords

    Inflation; Holt-Winters models; Autoregressive Integrated Moving Average models; Neural Network Auto-regression models; forecasting;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:amfeco:v:23:y:2021:i:57:p:517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valentin Dumitru (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.