(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej34-1-07.html
   My bibliography  Save this article

Emissions Savings from Wind Power Generation in Texas

Author

Listed:
  • Daniel T. Kaffine, Brannin J. McBee, and Jozef Lieskovsky
Abstract
Wind power has the potential to reduce emissions associated with conventional electricity generation. Using detailed, systemic hourly data of wind generation and emissions from plants in ERCOT (Texas), we empirically estimate the SO2, NOx and CO2 emissions offset by wind generation. Our estimation strategy implicitly captures both the marginal unit of generation displaced by wind on the electrical grid, and the marginal emissions reduction from that displaced unit. Our results also reveal substantial variation in emissions reductions, which appear to be strongly driven by differences in the generation mix. The environmental benefits from emissions reductions in ERCOT fail to cover government subsidies for wind generation.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Daniel T. Kaffine, Brannin J. McBee, and Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  • Handle: RePEc:aen:journl:ej34-1-07
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2509
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daniel T. Kaffine & Brannin J. McBee & Jozef Lieskovsky, 2012. "Emissions savings from wind power generation: Evidence from Texas, California and the Upper Midwest," Working Papers 2012-03, Colorado School of Mines, Division of Economics and Business.
    2. Beenstock, Michael, 1995. "The stochastic economics of windpower," Energy Economics, Elsevier, vol. 17(1), pages 27-37, January.
    3. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    4. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    5. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    6. Moore, Michael R. & Lewis, Geoffrey McD. & Cepela, Daniel J., 2010. "Markets for renewable energy and pollution emissions: Environmental claims, emission-reduction accounting, and product decoupling," Energy Policy, Elsevier, vol. 38(10), pages 5956-5966, October.
    7. Fischlein, Miriam & Larson, Joel & Hall, Damon M. & Chaudhry, Rumika & Rai Peterson, Tarla & Stephens, Jennie C. & Wilson, Elizabeth J., 2010. "Policy stakeholders and deployment of wind power in the sub-national context: A comparison of four U.S. states," Energy Policy, Elsevier, vol. 38(8), pages 4429-4439, August.
    8. Michael Greenstone & Elizabeth Kopits & Ann Wolverton, 2011. "Estimating the Social Cost of Carbon for Use in U.S. Federal Rulemakings: A Summary and Interpretation," NBER Working Papers 16913, National Bureau of Economic Research, Inc.
    9. Ramteen Sioshansi, 2011. "Increasing the Value of Wind with Energy Storage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-30.
    10. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    11. Puga, J. Nicolas, 0. "The Importance of Combined Cycle Generating Plants in Integrating Large Levels of Wind Power Generation," The Electricity Journal, Elsevier, vol. 23(7), pages 33-44, August.
    12. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel T. Kaffine & Brannin J. McBee & Jozef Lieskovsky, 2012. "Emissions savings from wind power generation: Evidence from Texas, California and the Upper Midwest," Working Papers 2012-03, Colorado School of Mines, Division of Economics and Business.
    2. Nandeeta Neerunjun & Hubert Stahn, 2023. "Renewable energy support: pre-announced policies and (in)-efficiency," AMSE Working Papers 2335, Aix-Marseille School of Economics, France.
    3. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    4. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    5. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    6. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    7. Nyamdash, Batsaikhan & Denny, Eleanor, 2013. "The impact of electricity storage on wholesale electricity prices," Energy Policy, Elsevier, vol. 58(C), pages 6-16.
    8. Dilek Uz & Callista Chim, 2022. "Intermittency in Wind Energy and Emissions from the Electricity Sector: Evidence from 13 Years of Data," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    9. Jesse D. Jenkins & Valerie J. Karplus, 2016. "Carbon pricing under binding political constraints," WIDER Working Paper Series wp-2016-44, World Institute for Development Economic Research (UNU-WIDER).
    10. Wichsinee Wibulpolprasert, 2016. "Optimal Environmental Policies And Renewable Energy Investment: Evidence From The Texas Electricity Market," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-41, November.
    11. Karen Maguire & Abdul Munasib, 2013. "Do Renewables Portfolio Standards Increase Electricity Prices? A Synthetic Control Approach," Economics Working Paper Series 1403, Oklahoma State University, Department of Economics and Legal Studies in Business, revised Aug 2013.
    12. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    13. Mills, Andrew D. & Wiser, Ryan H., 2015. "Strategies to mitigate declines in the economic value of wind and solar at high penetration in California," Applied Energy, Elsevier, vol. 147(C), pages 269-278.
    14. Ferrasse, Jean-Henry & Neerunjun, Nandeeta & Stahn, Hubert, 2022. "Intermittency and electricity retailing: An incomplete market approach," Mathematical Social Sciences, Elsevier, vol. 120(C), pages 24-36.
    15. Jean-Henry Ferrasse & Nandeeta Neerunjun & Hubert Stahn, 2021. "Managing intermittency in the electricity market," Working Papers halshs-03154612, HAL.
    16. Bahramian, Pejman & Jenkins, Glenn P. & Milne, Frank, 2021. "The displacement impacts of wind power electricity generation: Costly lessons from Ontario," Energy Policy, Elsevier, vol. 152(C).
    17. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    18. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    19. G. Cornelis van Kooten, 2015. "All you want to know about the Economics of Wind Power," Working Papers 2015-07, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    20. Hitaj, Claudia, 2015. "Location matters: The impact of renewable power on transmission congestion and emissions," Energy Policy, Elsevier, vol. 86(C), pages 1-16.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej34-1-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.