[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ags/jlaare/97853.html
   My bibliography  Save this article

Readdressing the Fertilizer Problem

Author

Listed:
  • Paulson, Nicholas D.
  • Babcock, Bruce A.
Abstract
The production literature has shown that inputs such as fertilizer can be defined as risk-increasing. However, farmers also consistently overapply nitrogen. A model of optimal input use under uncertainty is used to address this paradox. Using experimental data, a stochastic production relationship between yield and soil nitrate is estimated. Numerical results show that input uncertainty may cause farmers to overapply nitrogen. Survey data suggest that farmers are risk averse, but prefer small chances of high yields compared to small chances of crop failures when expected yields are equivalent. Furthermore, yield risk and yield variability are not equivalent.

Suggested Citation

  • Paulson, Nicholas D. & Babcock, Bruce A., 2010. "Readdressing the Fertilizer Problem," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(3), pages 1-17, December.
  • Handle: RePEc:ags:jlaare:97853
    DOI: 10.22004/ag.econ.97853
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/97853/files/JARE_Dec2010__02F_pp368-384.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.97853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ishii, Yasunori, 1977. "On the Theory of the Competitive Firm under Price Uncertainty: Note," American Economic Review, American Economic Association, vol. 67(4), pages 768-769, September.
    2. David A. Hennessy, 2009. "Crop Yield Skewness Under Law of the Minimum Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 197-208.
    3. Terrance M. Hurley & Paul D. Mitchell & Marlin E. Rice, 2004. "Risk and the Value of Bt Corn," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 345-358.
    4. Babcock, Bruce A. & Choi, E. Kwan & Feinerman, Eli, 1993. "Risk And Probability Premiums For Cara Utility Functions," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 18(1), pages 1-8, July.
    5. Babcock, Bruce A. & Blackmer, Alfred M., 1992. "The Value Of Reducing Temporal Input Nonuniformities," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 17(2), pages 1-13, December.
    6. Bruce A. Babcock, 1992. "The Effects of Uncertainty on Optimal Nitrogen Applications," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(2), pages 271-280.
    7. Bharat Ramaswami, 1992. "Production Risk and Optimal Input Decisions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 860-869.
    8. Sandmo, Agnar, 1971. "On the Theory of the Competitive Firm under Price Uncertainty," American Economic Review, American Economic Association, vol. 61(1), pages 65-73, March.
    9. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    10. Quirino Paris, 1992. "The von Liebig Hypothesis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 1019-1028.
    11. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    12. Edgar A. Lanzer & Quirino Paris, 1981. "A New Analytical Framework for the Fertilization Problem," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(1), pages 93-103.
    13. Hartman, Richard, 1976. "Factor Demand with Output Price Uncertainty," American Economic Review, American Economic Association, vol. 66(4), pages 675-681, September.
    14. Peter Berck & Gloria Helfand, 1990. "Reconciling the von Liebig and Differentiable Crop Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 985-996.
    15. S. SriRamaratnam & David A. Bessler & M. Edward Rister & John E. Matocha & James Novak, 1987. "Fertilization under Uncertainty: An Analysis Based on Producer Yield Expectations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(2), pages 349-357.
    16. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    17. Hurley, Terrance M. & Babcock, Bruce A., 2003. "Valuing Pest Control: How Much is Due to Risk Aversion?," Staff General Research Papers Archive 10385, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Almeida Furtado, Murilo & Meuwissen, Miranda P.M. & Ang, Frederic, 2024. "Land reallocation to increase production and reduce nitrogen surplus: impacts on crop diversity in England and Wales," 2024 Annual Meeting, July 28-30, New Orleans, LA 343878, Agricultural and Applied Economics Association.
    2. Khanna, Madhu & Atallah, Shadi & Kar, Saurajyoti & Sharma, Bijay & Wu, Linghui & Yu, Chengzheng, 2021. "Digital Transformation for a Sustainable Agriculture in the US: Opportunities and Challenges," 2021 Conference, August 17-31, 2021, Virtual 313799, International Association of Agricultural Economists.
    3. Andreas Meyer-Aurich & Yusuf Nadi Karatay, 2022. "Greenhouse Gas Mitigation Costs of Reduced Nitrogen Fertilizer," Agriculture, MDPI, vol. 12(9), pages 1-13, September.
    4. Teklewold, Hailemariam & Mekonnen, Alemu, 2020. "Weather at Different Growth Stages, Multiple Climate Smart Practices and Farm Level Risks: Panel Data Evidence from the Nile Basin of Ethiopia," EfD Discussion Paper 20-4, Environment for Development, University of Gothenburg.
    5. Niklas Möhring & Martina Bozzola & Stefan Hirsch & Robert Finger, 2020. "Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 429-444, May.
    6. Boyer, Christopher N. & Larson, James A. & Roberts, Roland K. & McClure, Angela T. & Tyler, Donald D. & Zhou, Vivian, 2013. "Stochastic Corn Yield Response Functions to Nitrogen for Corn after Corn, Corn after Cotton, and Corn after Soybeans," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 45(4), pages 669-681, November.
    7. Prifti, Ervin & Daidone, Silvio & Pace, Noemi & Davis, Benjamin, 2019. "Unconditional cash transfers, risk attitudes and modern inputs demand," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 53, pages 100-118.
    8. Hailemariam Teklewold & Alemu Mekonnen & Gunnar Kohlin & Salvatore Di Falco, 2017. "Does Adoption Of Multiple Climate-Smart Practices Improve Farmers’ Climate Resilience? Empirical Evidence From The Nile Basin Of Ethiopia," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    9. English, Alicia & Tyner, Wallace E. & Sesmero, Juan P. & Owens, Phillip & Muth, David, 2012. "Environmental Impacts of Stover Removal in the Corn Belt," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124873, Agricultural and Applied Economics Association.
    10. Sergei Schaub & Nadja El Benni, 2024. "How do price (risk) changes influence farmers’ preferences to reduce fertilizer application?," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 365-383, March.
    11. Khanna, Madhu, 2021. "Digital Transformation for a Sustainable Agriculture: Opportunities and Challenges," 2021 Conference, August 17-31, 2021, Virtual 315052, International Association of Agricultural Economists.
    12. Haneishi, Yusuke & Maruyama, Atsushi & Takagaki, Michiko & Kikuchi, Masao, 2014. "Farmers’ risk attitudes to influence the productivity and planting decision: A case of rice and maize cultivation in rural Uganda," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 9(4), pages 1-14, December.
    13. Sellars, Sarah C. & Schnitkey, Gary D. & Gentry, Laura F., 2020. "Do Illinois Farmers Follow University-Based Nitrogen Recommendations?," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304617, Agricultural and Applied Economics Association.
    14. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    15. Le, V.D. & Pham, L.T., 2024. "Attitudes towards risk and optimal use of inputs in maize production in the Mekong Delta, Vietnam," ASEAN University for Sustainable Food System, Faculty of Economics, Kasetsart University, Bangkok, Thailand, April 18-19, 2024 344440, Association of Southeast Asian Nations (ASEAN).
    16. Jiangying Guo & Jiwei Chen, 2022. "The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China," IJERPH, MDPI, vol. 19(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    2. Hurley, Terrance M., 2010. "A review of agricultural production risk in the developing world," Working Papers 188476, HarvestChoice.
    3. Babcock, Bruce A. & Shogren, Jason F., 1995. "The cost of agricultural production risk," Agricultural Economics, Blackwell, vol. 12(2), pages 141-150, August.
    4. Hennessy, David A., 1993. "Applications of contingent claims theory to microeconomic problems," ISU General Staff Papers 1993010108000011822, Iowa State University, Department of Economics.
    5. Tembo, Gelson & Brorsen, B. Wade & Epplin, Francis M., 2003. "Linear Response Stochastic Plateau Functions," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35217, Southern Agricultural Economics Association.
    6. Benjamin Dequiedt & Emmanuel Servonnat, 2016. "Risk as a limit or an opportunity to mitigate GHG emissions? The case of fertilisation in agriculture," Working Papers 1606, Chaire Economie du climat.
    7. Finger, Robert, 2012. "Nitrogen use and the effects of nitrogen taxation under consideration of production and price risks," Agricultural Systems, Elsevier, vol. 107(C), pages 13-20.
    8. Finger, Robert, 2011. "Reductions of Agricultural Nitrogen Use Under Consideration of Production and Price Risks," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114356, European Association of Agricultural Economists.
    9. Livanis, Grigorios T. & Salois, Matthew J. & Moss, Charles B., 2009. "A Nonparametric Kernel Representation of the Agricultural Production Function: Implications for Economic Measures of Technology," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51063, Agricultural Economics Society.
    10. Mitchell, Paul D., 2004. "Nutrient Best Management Practice Insurance and Farmer Perceptions of Adoption Risk," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(3), pages 657-673, December.
    11. Christian Gollier & James Hammitt & Nicolas Treich, 2013. "Risk and choice: A research saga," Journal of Risk and Uncertainty, Springer, vol. 47(2), pages 129-145, October.
    12. Röthig, Andreas, 2008. "The Impact of Backwardation on Hedgers' Demand for Currency Futures Contracts: Theory versus Empirical Evidence," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 35698, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Ana Paula Martins, 2008. "Uninsurable Risks: Uncertainty in Production, the Value of Information and Price Dispersion," Economics Bulletin, AccessEcon, vol. 28(8), pages 1.
    14. Ward, Patrick S. & Singh, Vartika, 2013. "Risk and Ambiguity Preferences and the Adoption of New Agricultural Technologies: Evidence from Field Experiments in Rural India," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150794, Agricultural and Applied Economics Association.
    15. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    16. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    17. Thiagu Ranganathan & Sarthak Gaurav & Ashish Singh, 2014. "Anomaly in Decision Making Under Risk:Violation of Stochastic Dominance Among Farmers in Gujarat, India," IEG Working Papers 343, Institute of Economic Growth.
    18. Pan, Shihua, 1990. "The microfoundations of mixed system of planning and markets: some theoretical considerations and an empirical analysis of the Chinese agriculture," ISU General Staff Papers 1990010108000010876, Iowa State University, Department of Economics.
    19. Jutta Roosen & David A. Hennessy, 2003. "Tests for the Role of Risk Aversion on Input Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 30-43.
    20. Peter Berck & Jacqueline Geoghegan & Stephen Stohs, 2000. "A Strong Test of the von Liebig Hypothesis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 948-955.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jlaare:97853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/waeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.