[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ags/aergaa/253511.html
   My bibliography  Save this article

Estimating input allocation from heterogeneous data sources: A comparison of alternative estimation approaches

Author

Listed:
  • Louhichi, Kamel
  • Jacquet, Florence
  • Butault, Jean Pierre
Abstract
This paper proposes the use of the Generalized Maximum Entropy (GME) method to estimate input allocation in multi-crop systems using heterogeneous data sources (farm accountancy data and cropping practices survey data). The aim is to explore the role of well-defined a priori information in improving the accuracy of GME estimation. The performance of the GME method is compared afterward to a Bayesian approach— Highest Posterior Density (HPD)—to assess their accuracy when reliable non-sample (prior) information is used and investigate their usefulness for reconciling heterogeneous data sources. Both approaches are applied to a given set of farm accounting data which reports information on input allocation between alternative input uses. The estimation results show that the use of well-defined prior information from external data source improves GME estimates even though this performance is not always significant. It also appears that the Bayesian (HPD) approach could be a good alternative to the GME estimator. HPD provides results that are close to the GME method with the advantage of a straightforward and transparent implementation of the a priori information.

Suggested Citation

  • Louhichi, Kamel & Jacquet, Florence & Butault, Jean Pierre, 2012. "Estimating input allocation from heterogeneous data sources: A comparison of alternative estimation approaches," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 13(2), pages 1-20.
  • Handle: RePEc:ags:aergaa:253511
    DOI: 10.22004/ag.econ.253511
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/253511/files/13_2_6.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.253511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Douglas J. Miller & Andrew J. Plantinga, 1999. "Modeling Land Use Decisions with Aggregate Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 180-194.
    2. Xiaobo Zhang & Shenggen Fan, 2001. "Estimating Crop-Specific Production Technologies in Chinese Agriculture: A Generalized Maximum Entropy Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 378-388.
    3. Ludo Peeters & Yves Surry, 2000. "Incorporating price-induced innovation in a symmetric generalised McFadden cost function with several outputs," Post-Print hal-01593889, HAL.
    4. Lence, Sergio H & Miller, Douglas J, 1998. "Estimation of Multi-output Production Functions with Incomplete Data: A Generalised Maximum Entropy Approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 25(2), pages 188-209.
    5. C. Richard Shumway & Rulon D. Pope & Elizabeth K. Nash, 1984. "Allocatable Fixed Inputs and Jointness in Agricultural Production: Implications for Economic Modeling," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(1), pages 72-78.
    6. Anne‐Sophie Robilliard & Sherman Robinson, 2003. "Reconciling Household Surveys and National Accounts Data Using a Cross Entropy Estimation Method," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 49(3), pages 395-406, September.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Perloff,Jeffrey M. & Karp,Larry S. & Golan,Amos, 2007. "Estimating Market Power and Strategies," Cambridge Books, Cambridge University Press, number 9780521011143, September.
    9. Thomas Heckelei & Wolfgang Britz, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 57, pages 27-50.
    10. Gocht, Alexander, 2008. "Estimating input allocation for farm supply models," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6469, European Association of Agricultural Economists.
    11. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(1), pages 27-50, March.
    12. Yves Léon & Ludo Peeters & Maurice Quinqu & Yves Surry, 1999. "The use of maximum entropy to estimate input-output coefficients from regional farm accounting data," Post-Print hal-01931589, HAL.
    13. Subhash C. Ray, 1985. "Methods of Estimating the Input Coefficients for Linear Programming Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(3), pages 660-665.
    14. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    15. Richard E. Just & David Zilberman & Eithan Hochman, 1983. "Estimation of Multicrop Production Functions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(4), pages 770-780.
    16. P. Midmore, 1990. "Estimating Input‐Output Coefficients From Regional Farm Data—A Comment," Journal of Agricultural Economics, Wiley Blackwell, vol. 41(1), pages 108-111, January.
    17. Yves Léony & Ludo Peeters & Maurice Quinqu & Yves Surry, 1999. "The Use of Maximum Entropy to Estimate Input‐Output Coefficients From Regional Farm Accounting Data," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(3), pages 425-439, September.
    18. Heckelei, Thomas & Mittelhammer, Ronald C. & Jansson, Torbjorn, 2008. "A Bayesian Alternative To Generalized Cross Entropy Solutions For Underdetermined Econometric Models," Discussion Papers 56973, University of Bonn, Institute for Food and Resource Economics.
    19. Paris, Quirino & Caputo, Michael R., 2001. "Sensitivity Of The Gme Estimates To Support Bounds," Working Papers 11966, University of California, Davis, Department of Agricultural and Resource Economics.
    20. Richard E. Just & David Zilberman & Eithan Hochman & Ziv Bar-Shira, 1990. "Input Allocation in Multicrop Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(1), pages 200-209.
    21. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    22. A. Moxey & R. Tiffin, 1994. "Estimating Linear Production Coefficients From Farm Business Survey Data: A Note," Journal of Agricultural Economics, Wiley Blackwell, vol. 45(3), pages 381-385, September.
    23. Ludo Peeters & Yves Surry, 2000. "Incorporating Price-Induced Innovation in a Symmetric Generalised McFadden Cost Function with Several Outputs," Journal of Productivity Analysis, Springer, vol. 14(1), pages 53-70, July.
    24. Miller, Douglas & Plantinga, Andrew J., 1999. "Modeling Land Use Decisions with Aggregate Data," Staff General Research Papers Archive 1487, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre-Alain Jayet & Athanasios Petsakos & Raja Chakir & Anna Lungarska & Stéphane De Cara & Elvire Petel & Pierre Humblot & Caroline Godard & David Leclère & Pierre Cantelaube & Cyril Bourgeois & Mél, 2023. "The European agro-economic model AROPAj," Working Papers hal-04109872, HAL.
    2. Rick Cox & Shalika Walker & Joep van der Velden & Phuong Nguyen & Wim Zeiler, 2020. "Flattening the Electricity Demand Profile of Office Buildings for Future-Proof Smart Grids," Energies, MDPI, vol. 13(9), pages 1-27, May.
    3. António Xavier & Maria Belem Freitas & Maria do Socorro Rosário & Rui Fragoso, 2016. "Disaggregating Statistical Data at Field Level: An Entropy Approach," CEFAGE-UE Working Papers 2016_06, University of Evora, CEFAGE-UE (Portugal).
    4. António Xavier & Rui Fragoso & Maria De Belém Costa Freitas & Maria Do Socorro Rosário & Florentino Valente, 2018. "A Minimum Cross-Entropy Approach to Disaggregate Agricultural Data at the Field Level," Land, MDPI, vol. 7(2), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Fragoso & Maria Leonor da Silva Carvalho, 2013. "Estimation of cost allocation coefficients at the farm level using an entropy approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1893-1906, September.
    2. Arfini, Filippo & Donati, Michele & Grossi, L. & Paris, Quirino, 2008. "Revenue and Cost Functions in PMP: a Methodological Integration for a Territorial Analysis of CAP," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6636, European Association of Agricultural Economists.
    3. Arfini, Filippo & Donati, Michele & Paris, Quirino, 2008. "Innovation in Estimation of Revenue and Cost Functions in PMP Using FADN Information at Regional Level," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44008, European Association of Agricultural Economists.
    4. Msangi, Siwa & Howitt, Richard E., 2006. "Estimating Disaggregate Production Functions: An Application to Northern Mexico," 2006 Annual meeting, July 23-26, Long Beach, CA 21080, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Gocht, Alexander, 2008. "Estimating input allocation for farm supply models," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6469, European Association of Agricultural Economists.
    6. Hansen, H. & Surry, Y., 2007. "Die Schätzung verfahrensspezifischer Faktoreneinsatzmengen für die Landwirtschaft in Deutschland," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 42, March.
    7. Hansen, Heiko & Surry, Yves R., 2006. "Die Schatzung Verfahrensspezifischer Faktoreinsatzmengen Fur Die Landwirtschaft In Deutschland," 46th Annual Conference, Giessen, Germany, October 4-6, 2006 14959, German Association of Agricultural Economists (GEWISOLA).
    8. Heckelei, Thomas & Mittelhammer, Ronald C. & Jansson, Torbjorn, 2008. "A Bayesian Alternative To Generalized Cross Entropy Solutions For Underdetermined Econometric Models," Discussion Papers 56973, University of Bonn, Institute for Food and Resource Economics.
    9. Heckelei, Thomas & Britz, Wolfgang, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 57.
    10. Arfini, Filippo & Donati, Michele & Marongiu, Sonia & Cesaro, Luca, 2012. "Farm production costs estimation trough PMP Models: an application in three Italian Regions," 2012 First Congress, June 4-5, 2012, Trento, Italy 124117, Italian Association of Agricultural and Applied Economics (AIEAA).
    11. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    12. Yves Léony & Ludo Peeters & Maurice Quinqu & Yves Surry, 1999. "The Use of Maximum Entropy to Estimate Input‐Output Coefficients From Regional Farm Accounting Data," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(3), pages 425-439, September.
    13. Heckelei, T. & Wolff, H., 2001. "Ansätze zur (Auf-)Lösung eines alten Methodenstreits: Ökonometrische Spezifikation von Programmierungsmodellen zur Agrarangebotsanalyse," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 37.
    14. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike, 2009. "Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach," Agricultural Systems, Elsevier, vol. 99(2-3), pages 126-140, February.
    15. Howitt, Richard E. & Msangi, Siwa, 2002. "Reconstructing Disaggregate Production Functions," 2002 Annual meeting, July 28-31, Long Beach, CA 19585, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Petsakos, Athanasios & Rozakis, Stelios, 2011. "Integrating risk and uncertainty in PMP models," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114762, European Association of Agricultural Economists.
    17. Alain Carpentier & Elodie Letort, 2014. "Multicrop Production Models with Multinomial Logit Acreage Shares," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 537-559, December.
    18. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    19. Bahta, Sirak Teclemariam & Berner, Anja & Offermann, Frank, 2011. "Estimation of Commodity Specific Production Costs Using German Farm Accountancy Data," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114233, European Association of Agricultural Economists.
    20. G. Lindberg & P. Midmore & Y. Surry, 2012. "Agriculture’s Inter-industry Linkages, Aggregation Bias and Rural Policy Reforms," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(3), pages 552-575, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aergaa:253511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/etagrea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.