[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ags/aareaj/338502.html
   My bibliography  Save this article

An economic analysis of sheep flock structures for mixed enterprise Australian farm businesses

Author

Listed:
  • Young, Michael
  • Kingwell, Ross
  • Young, John
  • Vercoe, Phil
Abstract
A strategic question facing many mixed enterprise broadacre farm businesses in Australia is, ‘What sheep flock size and structure is most profitable to complement the farm’s cropping enterprises?’ This study answers this question for a typical large mixed enterprise farm business in a key production region of Australia. Whole-farm bioeconomic modelling, combined with broad-ranging sensitivity analysis, is used to examine the profitability of different sheep flock structures and sizes. We find the most profitable flock structure is to run Merino ewes and turn off finished Merino or firstcross lambs. The profitable selection of these flocks is robust to commodity price variation but does require the farmer to give more attention to sheep management. The correct choice of flock structure greatly adds to farm profit. A farm based on cropping and a self-replacing Merino flock using surplus ewes for first-cross, meat lamb production earns 33 per cent more profit than a similar farm that runs a traditional self-replacing Merino flock that emphasises wool production. Of far less importance than flock structure, as a source of additional profit, is to increase flock size or adjust cropping intensity.

Suggested Citation

  • Young, Michael & Kingwell, Ross & Young, John & Vercoe, Phil, 2020. "An economic analysis of sheep flock structures for mixed enterprise Australian farm businesses," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
  • Handle: RePEc:ags:aareaj:338502
    DOI: 10.22004/ag.econ.338502
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/338502/files/ajar12371.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.338502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gibson, Lauren & Kingwell, Ross & Doole, Graeme, 2008. "The role and value of eastern star clover in managing herbicide-resistant crop weeds: A whole-farm analysis," Agricultural Systems, Elsevier, vol. 98(3), pages 199-207, October.
    2. Bardsley, Peter & Harris, Michael, 1987. "An Approach To The Econometric Estimation Of Attitudes To Risk In Agriculture," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 31(2), pages 1-15, August.
    3. Kingwell, Ross S., 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-23.
    4. Flugge, Felicity & Schilizzi, Steven, 2003. "Greenhouse Gas Abatement Policies and the Value of Carbon Sinks: Do Grazing and Cropping Systems have Different Destinies?," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 57865, Australian Agricultural and Resource Economics Society.
    5. Kingwell, R. S. & Ghadim, A. K. Abadi & Robinson, S. D. & Young, J. M., 1995. "Introducing Awassi sheep to Australia: an application of farming system models," Agricultural Systems, Elsevier, vol. 47(4), pages 451-471.
    6. Poole, M. L. & Turner, Neil C. & Young, J. M., 2002. "Sustainable cropping systems for high rainfall areas of southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 201-211, February.
    7. Tas Thamo & Ross S. Kingwell & David J. Pannell, 2013. "Measurement of greenhouse gas emissions from agriculture: economic implications for policy and agricultural producers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 234-252, April.
    8. Villano, Renato & Fleming, Euan & Fleming, Pauline, 2010. "Evidence of farm-level synergies in mixed-farming systems in the Australian Wheat-Sheep Zone," Agricultural Systems, Elsevier, vol. 103(3), pages 146-152, March.
    9. Ross Kingwell, 2011. "Managing complexity in modern farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 12-34, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Young & Ross Kingwell & John Young & Phil Vercoe, 2020. "An economic analysis of sheep flock structures for mixed enterprise Australian farm businesses," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 677-699, July.
    2. Browne, Natalie & Kingwell, Ross & Behrendt, Ralph & Eckard, Richard, 2013. "The relative profitability of dairy, sheep, beef and grain farm enterprises in southeast Australia under selected rainfall and price scenarios," Agricultural Systems, Elsevier, vol. 117(C), pages 35-44.
    3. Finlayson, John & Real, Daniel & Nordblom, Tom & Revell, Clinton & Ewing, Mike & Kingwell, Ross, 2012. "Farm level assessments of a novel drought tolerant forage: Tedera (Bituminaria bituminosa C.H. Stirt var. albomarginata)," Agricultural Systems, Elsevier, vol. 112(C), pages 38-47.
    4. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.
    5. Doole, Graeme J. & Romera, Alvaro J., 2015. "Trade-offs between profit, production, and environmental footprint on pasture-based dairy farms in the Waikato region of New Zealand," Agricultural Systems, Elsevier, vol. 141(C), pages 14-23.
    6. Weifeng Xu & Qingsong Ruan & Chang Liu, 2019. "Can the Famous University Experience of Top Managers Improve Corporate Performance? Evidence from China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    7. Sanaz Shoghi Kalkhoran & David Pannell & Maksym Polyakov & Ben White & Morteza Chalak Haghighi & Amin William Mugera & Imma Farre, 2021. "A dynamic model of optimal lime application for wheat production in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 472-490, April.
    8. Junquera, Victoria & Rubenstein, Daniel I. & Grêt-Regamey, Adrienne & Knaus, Florian, 2022. "Structural change in agriculture and farmers' social contacts: Insights from a Swiss mountain region," Agricultural Systems, Elsevier, vol. 200(C).
    9. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    10. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    11. Nazrul Islam & Vilaphonh Xayavong & Ross Kingwell, 2014. "Broadacre farm productivity and profitability in south-western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), pages 147-170, April.
    12. Nuthall, Peter L., 2012. "The intuitive world of farmers – The case of grazing management systems and experts," Agricultural Systems, Elsevier, vol. 107(C), pages 65-73.
    13. Kingwell, Ross & Islam, Nazrul & Xayavong, Vilaphonh, 2020. "Farming systems and their business strategies in south-western Australia: A decadal assessment of their profitability," Agricultural Systems, Elsevier, vol. 181(C).
    14. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    15. Shoghi Kalkhoran, Sanaz & White, Benedict & Polyakov, Maksym & Chalak, Morteza & Mugera, Amin William & Pannell, David J., 2018. "A Dynamic Optimization Model of Agricultural Lime Application," 2018 Annual Meeting, August 5-7, Washington, D.C. 274340, Agricultural and Applied Economics Association.
    16. Ulukan, Defne & Grillot, Myriam & Benoit, Marc & Bernes, Gun & Dumont, Bertrand & Magne, Marie-Angélina & Monteiro, Leonardo & Parsons, David & Veysset, Patrick & Ryschawy, Julie & Steinmetz, Lucille , 2022. "Positive deviant strategies implemented by organic multi-species livestock farms in Europe," Agricultural Systems, Elsevier, vol. 201(C).
    17. Tas Thamo & Ross S. Kingwell & David J. Pannell, 2013. "Measurement of greenhouse gas emissions from agriculture: economic implications for policy and agricultural producers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 234-252, April.
    18. Latruffe, Laure & Mann, Stefan, 2015. "Labour constraints on choosing profitable products for part-time farmers in Swiss agriculture," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 4(2), pages 1-15, August.
    19. Martin, Guillaume & Barth, Kerstin & Benoit, Marc & Brock, Christopher & Destruel, Marie & Dumont, Bertrand & Grillot, Myriam & Hübner, Severin & Magne, Marie-Angélina & Moerman, Marie & Mosnier, Clai, 2020. "Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review," Agricultural Systems, Elsevier, vol. 181(C).
    20. Kingwell, Ross S. & Metcalf, Tess, 2009. "Low Emission Farming Systems: A whole-farm analysis of the potential impacts of greenhouse policy," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 48162, Australian Agricultural and Resource Economics Society.

    More about this item

    Keywords

    Livestock Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aareaj:338502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.