A Study Of Emission & Performance Characteristics Of Diesel Engine Run By Dual Fuel (Bio Diesel + Acetylene Gas)
Author
Suggested Citation
DOI: 10.26480/jmerd.01.2019.104.108
Download full text from publisher
References listed on IDEAS
- Singh, R.N. & Singh, S.P. & Pathak, B.S., 2007. "Investigations on operation of CI engine using producer gas and rice bran oil in mixed fuel mode," Renewable Energy, Elsevier, vol. 32(9), pages 1565-1580.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
- Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
- Yaliwal, V.S. & Banapurmath, N.R. & Hosmath, R.S. & Khandal, S.V. & Budzianowski, Wojciech M., 2016. "Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application," Renewable Energy, Elsevier, vol. 99(C), pages 1253-1261.
- Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
- Sergejus Lebedevas & Saugirdas Pukalskas & Vygintas Daukšys & Alfredas Rimkus & Mindaugas Melaika & Linas Jonika, 2019. "Research on Fuel Efficiency and Emissions of Converted Diesel Engine with Conventional Fuel Injection System for Operation on Natural Gas," Energies, MDPI, vol. 12(12), pages 1-32, June.
- Banapurmath, N.R. & Tewari, P.G., 2009. "Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer gas and Honge oil and its methyl ester (HOME) with and without carburetor," Renewable Energy, Elsevier, vol. 34(4), pages 1009-1015.
- Sergejus Lebedevas & Tomas Čepaitis, 2021. "Parametric Analysis of the Combustion Cycle of a Diesel Engine for Operation on Natural Gas," Sustainability, MDPI, vol. 13(5), pages 1-23, March.
- Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as i," Renewable Energy, Elsevier, vol. 33(9), pages 2007-2018.
- Banapurmath, N.R. & Tewari, P.G. & Yaliwal, V.S. & Kambalimath, Satish & Basavarajappa, Y.H., 2009. "Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction," Renewable Energy, Elsevier, vol. 34(7), pages 1877-1884.
- Sushrut S. Halewadimath & Nagaraj R. Banapurmath & V. S. Yaliwal & V. N. Gaitonde & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & Ashok M. Sajjan, 2023. "Experimental Investigations on Dual-Fuel Engine Fueled with Tertiary Renewable Fuel Combinations of Biodiesel and Producer—Hydrogen Gas Using Response Surface Methodology," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
- Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
- Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- Ali Diané & Gounkaou Woro Yomi & Sidiki Zongo & Tizane Daho & Hervé Jeanmart, 2023. "Characterization, at Partial Loads, of the Combustion and Emissions of a Dual-Fuel Engine Burning Diesel and a Lean Gas Surrogate," Energies, MDPI, vol. 16(15), pages 1-16, July.
More about this item
Keywords
Prosopis juliflora; Brake thermal efficiency; transesterification process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zjmerd:v:42:y:2019:i:1:p:104-108. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://jmerd.org.my/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.