[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/zbw/ifweej/201627.html
   My bibliography  Save this article

The role of economic policy uncertainty in predicting U.S. recessions: A mixed-frequency Markov-switching vector autoregressive approach

Author

Listed:
  • Balcilar, Mehmet
  • Gupta, Rangan
  • Segnon, Mawuli
Abstract
This paper analyzes the performance of the monthly economic policy uncertainty (EPU) index in predicting recessionary regimes of the (quarterly) U.S. GDP. In this regard, the authors apply a mixed-frequency Markov-switching vector autoregressive (MF-MS-VAR) model, and compare its in-sample and out-of-sample forecasting performances to those of a Markov-switching vector autoregressive model (MS-VAR, where the EPU is averaged over the months to produce quarterly values) and a Markov-switching autoregressive (MS-AR) model. Their results show that the MF-MS-VAR fits the different recession regimes, and provides out-of-sample forecasts of recession probabilities which are more accurate than those derived from the MS-VAR and MS-AR models. The results highlight the importance of using high-frequency values of the EPU, and not averaging them to obtain quarterly values, when forecasting recessionary regimes for the U.S. economy.

Suggested Citation

  • Balcilar, Mehmet & Gupta, Rangan & Segnon, Mawuli, 2016. "The role of economic policy uncertainty in predicting U.S. recessions: A mixed-frequency Markov-switching vector autoregressive approach," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-20.
  • Handle: RePEc:zbw:ifweej:201627
    DOI: 10.5018/economics-ejournal.ja.2016-27
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.5018/economics-ejournal.ja.2016-27
    Download Restriction: no

    File URL: https://www.econstor.eu/bitstream/10419/147301/1/87165850X.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5018/economics-ejournal.ja.2016-27?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Jones, Paul M. & Olson, Eric, 2013. "The time-varying correlation between uncertainty, output, and inflation: Evidence from a DCC-GARCH model," Economics Letters, Elsevier, vol. 118(1), pages 33-37.
    3. Haroon Mumtaz & Francesco Zanetti, 2013. "The Impact of the Volatility of Monetary Policy Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(4), pages 535-558, June.
    4. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    5. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    6. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    7. Serena Ng, 2014. "Viewpoint: Boosting Recessions," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(1), pages 1-34, February.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Camacho, Maximo, 2013. "Mixed-frequency VAR models with Markov-switching dynamics," Economics Letters, Elsevier, vol. 121(3), pages 369-373.
    10. Colombo, Valentina, 2013. "Economic policy uncertainty in the US: Does it matter for the Euro area?," Economics Letters, Elsevier, vol. 121(1), pages 39-42.
    11. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    12. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    13. Ben S. Bernanke, 1983. "Irreversibility, Uncertainty, and Cyclical Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 98(1), pages 85-106.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    16. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    17. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    18. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    19. Chris Redl, 2018. "Macroeconomic Uncertainty in South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 86(3), pages 361-380, September.
    20. Karnizova, Lilia & Li, Jiaxiong (Chris), 2014. "Economic policy uncertainty, financial markets and probability of US recessions," Economics Letters, Elsevier, vol. 125(2), pages 261-265.
    21. repec:mcb:jmoncb:v:45:y:2013:i::p:535-558 is not listed on IDEAS
    22. Haroon Mumtaz & Konstantinos Theodoridis, 2014. "The Changing Transmission of Uncertainty shocks in the US: An Empirical Analysis," Working Papers 735, Queen Mary University of London, School of Economics and Finance.
    23. James D. Hamilton & Baldev Raj, 2002. "New directions in business cycle research and financial analysis," Empirical Economics, Springer, vol. 27(2), pages 149-162.
    24. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    25. Knut Are Aastveit & Gisle James Natvik & Sergio Sola, 2013. "Economic uncertainty and the effectiveness of monetary policy," Working Paper 2013/17, Norges Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christou, Christina & Gupta, Rangan, 2020. "Forecasting equity premium in a panel of OECD countries: The role of economic policy uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 243-248.
    2. Mawuli Segnon & Rangan Gupta & Stelios Bekiros & Mark E. Wohar, 2018. "Forecasting US GNP growth: The role of uncertainty," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 541-559, August.
    3. Rangan Gupta & Chi Keung Marco Lau & Mark E. Wohar, 2019. "The impact of US uncertainty on the Euro area in good and bad times: evidence from a quantile structural vector autoregressive model," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 353-368, May.
    4. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
    5. Mehmet Balcilar & Riza Demirer & Rangan Gupta & Reneé van Eyden, 2016. "Effectiveness of Monetary Policy in the Euro Area: The Role of US Economic Policy Uncertainty," Working Papers 201620, University of Pretoria, Department of Economics.
    6. Balcilar, Mehmet & Gupta, Rangan & Kim, Won Joong & Kyei, Clement, 2019. "The role of economic policy uncertainties in predicting stock returns and their volatility for Hong Kong, Malaysia and South Korea," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 150-163.
    7. Balcilar, Mehmet & Demirer, Riza & Gupta, Rangan & van Eyden, Reneé, 2017. "The impact of US policy uncertainty on the monetary effectiveness in the Euro area," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1052-1064.
    8. Chuliá, Helena & Gupta, Rangan & Uribe, Jorge M. & Wohar, Mark E., 2017. "Impact of US uncertainties on emerging and mature markets: Evidence from a quantile-vector autoregressive approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 178-191.
    9. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    10. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    11. Giovanni Pellegrino, 2021. "Uncertainty and monetary policy in the US: A journey into nonlinear territory," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 1106-1128, July.
    12. Karanasos, M. & Yfanti, S., 2021. "On the Economic fundamentals behind the Dynamic Equicorrelations among Asset classes: Global evidence from Equities, Real estate, and Commodities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    13. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    14. Saygin Sahinoz & Evren Erdogan Cosar, 2020. "Quantifying uncertainty and identifying its impacts on the Turkish economy," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(2), pages 365-387, May.
    15. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    16. Lee, Seohyun, 2017. "Three essays on uncertainty: real and financial effects of uncertainty shocks," MPRA Paper 83617, University Library of Munich, Germany.
    17. Nonejad, Nima, 2021. "Predicting equity premium using news-based economic policy uncertainty: Not all uncertainty changes are equally important," International Review of Financial Analysis, Elsevier, vol. 77(C).
    18. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2024. "Macro‐financial linkages in the high‐frequency domain: Economic fundamentals and the Covid‐induced uncertainty channel in US and UK financial markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1581-1608, April.
    19. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    20. Chow Sheung-Chi & Cunado Juncal & Gupta Rangan & Wong Wing-Keung, 2018. "Causal relationships between economic policy uncertainty and housing market returns in China and India: evidence from linear and nonlinear panel and time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-15, April.

    More about this item

    Keywords

    Business cycles; economic policy uncertainty; mixed frequency; Markovswitching VAR models;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifweej:201627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.