[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/226208.html
   My bibliography  Save this article

Groundwater quota versus tiered groundwater pricing: Two cases of groundwater management in north-west China

Author

Listed:
  • Aarnoudse, Eefje
  • Qu, Wei
  • Bluemling, Bettina
  • Herzfeld, Thomas
Abstract
Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are used to evaluate the effectiveness of the different regulatory institutions implemented with help of the smart card machines. In the given context, groundwater quota is more effective in curbing farmers’ groundwater use than the tiered groundwater pricing. The study shows that the usefulness of smart card machines depends on their embedding in the societal context and related regulatory institutions.

Suggested Citation

  • Aarnoudse, Eefje & Qu, Wei & Bluemling, Bettina & Herzfeld, Thomas, 2017. "Groundwater quota versus tiered groundwater pricing: Two cases of groundwater management in north-west China," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 33(6), pages 917-934.
  • Handle: RePEc:zbw:espost:226208
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/226208/1/Aarnoudse_2017_Groundwater_quota.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yang, Hong & Zhang, Xiaohe & Zehnder, Alexander J. B., 2003. "Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture," Agricultural Water Management, Elsevier, vol. 61(2), pages 143-161, June.
    2. Schoengold, Karina, 2010. "Tiered Pricing and Cost Functions: Are Equity, Cost Recovery and Economic Efficiency Compatible Goals?," Cornhusker Economics 306675, University of Nebraska-Lincoln, Department of Agricultural Economics.
    3. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," IWMI Books, Reports H039669, International Water Management Institute.
    4. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    5. Schoengold, Karina & Zilberman, David, 2007. "The Economics of Water, Irrigation, and Development," Handbook of Agricultural Economics, in: Robert Evenson & Prabhu Pingali (ed.), Handbook of Agricultural Economics, edition 1, volume 3, chapter 58, pages 2933-2977, Elsevier.
    6. Giordano, Mark & Villholth, Karen, 2007. "The agricultural groundwater revolution: opportunities and threats to development," IWMI Books, Reports H040039, International Water Management Institute.
    7. Bjornlund, Henning & Nicol, Lorraine & Klein, K.K., 2007. "Challenges in implementing economic instruments to manage irrigation water on farms in southern Alberta," Agricultural Water Management, Elsevier, vol. 92(3), pages 131-141, September.
    8. Shah, Tushaar, 2007. "The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts," Book Chapters,, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khampheng Boudmyxay & Shuai Zhong & Lei Shen, 2019. "Designing Optimum Water-Saving Policy in China Using Quantity and Price Control Mechanisms," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    2. Wei Qu & Yanmei Tan & Zhentao Li & Eefje Aarnoudse & Qin Tu, 2020. "Agricultural Water Use Efficiency—A Case Study of Inland-River Basins in Northwest China," Sustainability, MDPI, vol. 12(23), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    2. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    3. World Bank, 2020. "Managing Groundwater for Drought Resilience in South Asia," World Bank Publications - Reports 33332, The World Bank Group.
    4. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    5. Jac Van der Gun & Annukka Lipponen, 2010. "Reconciling Groundwater Storage Depletion Due to Pumping with Sustainability," Sustainability, MDPI, vol. 2(11), pages 1-18, November.
    6. Glendenning, C.J. & Vervoort, R.W., 2010. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India. Part 1: Field-scale impacts," Agricultural Water Management, Elsevier, vol. 98(2), pages 331-342, December.
    7. Bjornlund, Vibeke & Bjornlund, Henning, 2019. "Understanding agricultural water management in a historical context using a socioeconomic and biophysical framework," Agricultural Water Management, Elsevier, vol. 213(C), pages 454-467.
    8. Chandra Kiran B. Krishnamurthy, 2017. "Optimal Management of Groundwater Under Uncertainty: A Unified Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 351-377, June.
    9. Paul Pavelic, 2020. "Mitigating Floods for Managing Droughts through Aquifer Storage," World Bank Publications - Reports 33244, The World Bank Group.
    10. Amarasinghe, Upali A. & Shah, Tushaar & McCornick, Peter G., 2009. "Meeting India’s water future: some policy options," Book Chapters,, International Water Management Institute.
    11. Foster, Timothy & Adhikari, Roshan & Adhikari, Subash & Justice, Scott & Tiwari, Baburam & Urfels, Anton & Krupnik, Timothy J., 2021. "Improving pumpset selection to support intensification of groundwater irrigation in the Eastern Indo-Gangetic Plains," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Siwa Msangi & Sarah Ann Cline, 2016. "Improving Groundwater Management for Indian Agriculture: Assessing Tradeoffs Across Policy Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    13. Ram Fishman & Upmanu Lall & Vijay Modi & Nikunj Parekh, 2016. "Can Electricity Pricing Save India’s Groundwater? Field Evidence from a Novel Policy Mechanism in Gujarat," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(4), pages 819-855.
    14. Uma Lele, 2022. "Growing water scarcities: Responses of India and China," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(1), pages 411-433, March.
    15. M. A. Samad Azad & Tihomir Ancev, 2016. "Economics of Salinity Effects from Irrigated Cotton: An Efficiency Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-24, March.
    16. Upali A. Amarasinghe & Tushaar Shah & Peter G. McCornick, 2008. "Seeking calm water: Exploring policy options for India's water future," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 305-315, November.
    17. Alauddin, Mohammad & Sharma, Bharat R., 2013. "Inter-district rice water productivity differences in Bangladesh: An empirical exploration and implications," Ecological Economics, Elsevier, vol. 93(C), pages 210-218.
    18. Amarasinghe, Upali A. & Shah, Tushaar & McCornick, Peter G., 2009. "Meeting India\u2019s water future: some policy options," IWMI Books, Reports H042034, International Water Management Institute.
    19. Dennis Wichelns, 2015. "Achieving Water and Food Security in 2050: Outlook, Policies, and Investments," Agriculture, MDPI, vol. 5(2), pages 1-33, April.
    20. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:226208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.