[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i3p356-367.html
   My bibliography  Save this article

Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems

Author

Listed:
  • J. Park
  • T. P. Seager
  • P. S. C. Rao
  • M. Convertino
  • I. Linkov
Abstract
Recent natural and man‐made catastrophes, such as the Fukushima nuclear power plant, flooding caused by Hurricane Katrina, the Deepwater Horizon oil spill, the Haiti earthquake, and the mortgage derivatives crisis, have renewed interest in the concept of resilience, especially as it relates to complex systems vulnerable to multiple or cascading failures. Although the meaning of resilience is contested in different contexts, in general resilience is understood to mean the capacity to adapt to changing conditions without catastrophic loss of form or function. In the context of engineering systems, this has sometimes been interpreted as the probability that system conditions might exceed an irrevocable tipping point. However, we argue that this approach improperly conflates resilience and risk perspectives by expressing resilience exclusively in risk terms. In contrast, we describe resilience as an emergent property of what an engineering system does, rather than a static property the system has. Therefore, resilience cannot be measured at the systems scale solely from examination of component parts. Instead, resilience is better understood as the outcome of a recursive process that includes: sensing, anticipation, learning, and adaptation. In this approach, resilience analysis can be understood as differentiable from, but complementary to, risk analysis, with important implications for the adaptive management of complex, coupled engineering systems. Management of the 2011 flooding in the Mississippi River Basin is discussed as an example of the successes and challenges of resilience‐based management of complex natural systems that have been extensively altered by engineered structures.

Suggested Citation

  • J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:3:p:356-367
    DOI: 10.1111/j.1539-6924.2012.01885.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2012.01885.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2012.01885.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul J. Crutzen, 2002. "Geology of mankind," Nature, Nature, vol. 415(6867), pages 23-23, January.
    2. Aban, Inmaculada B. & Meerschaert, Mark M. & Panorska, Anna K., 2006. "Parameter Estimation for the Truncated Pareto Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 270-277, March.
    3. Louis Anthony (Tony) Cox, 2012. "Confronting Deep Uncertainties in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1607-1629, October.
    4. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    5. Thomas P. Seager, 2008. "The sustainability spectrum and the sciences of sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 17(7), pages 444-453, November.
    6. Möller, Niklas & Hansson, Sven Ove, 2008. "Principles of engineering safety: Risk and uncertainty reduction," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 798-805.
    7. Terje Aven & Ortwin Renn, 2009. "The Role of Quantitative Risk Assessments for Characterizing Risk and Uncertainty and Delineating Appropriate Risk Management Options, with Special Emphasis on Terrorism Risk," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 587-600, April.
    8. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    9. Yakov Ben‐Haim, 2012. "Why Risk Analysis is Difficult, and Some Thoughts on How to Proceed," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1638-1646, October.
    10. Linda P. Beckerman, 2000. "Application of complex systems science to systems engineering," Systems Engineering, John Wiley & Sons, vol. 3(2), pages 96-102.
    11. Fikret Berkes, 2007. "Understanding uncertainty and reducing vulnerability: lessons from resilience thinking," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 283-295, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    2. Kuei-Hsien Liao, 2014. "From flood control to flood adaptation: a case study on the Lower Green River Valley and the City of Kent in King County, Washington," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 723-750, March.
    3. Muhammad Umar & Mark Wilson & Jeff Heyl, 2017. "Food Network Resilience Against Natural Disasters: A Conceptual Framework," SAGE Open, , vol. 7(3), pages 21582440177, July.
    4. Payuna Uday & Karen Marais, 2015. "Designing Resilient Systems‐of‐Systems: A Survey of Metrics, Methods, and Challenges," Systems Engineering, John Wiley & Sons, vol. 18(5), pages 491-510, October.
    5. Yeowon Kim & Daniel A. Eisenberg & Emily N. Bondank & Mikhail V. Chester & Giuseppe Mascaro & B. Shane Underwood, 2017. "Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change," Climatic Change, Springer, vol. 145(3), pages 397-412, December.
    6. Katsumasa Tanaka & Richard S.J. Tol & Dmitry Rokityanskiy & Brian C. O'Neill & Michael Obersteiner, 2006. "Evaluating Global Warming Potentials as Historical Temperature Proxies: an application of ACC2 Inverse Calculation," Working Papers FNU-118, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2006.
    7. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    8. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    9. M. De Donno & M. Pratelli, 2006. "A theory of stochastic integration for bond markets," Papers math/0602532, arXiv.org.
    10. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    11. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    12. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    13. Castillo, Joan del & Serra, Isabel, 2015. "Likelihood inference for generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 116-128.
    14. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    15. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    16. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    17. Panagiota DIONYSOPOULOU & Georgios SVARNIAS & Theodore PAPAILIAS, 2021. "Total Quality Management In Public Sector, Case Study: Customs Service," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 153-168, June.
    18. Shahzad Hussain & Sajjad Haider Bhatti & Tanvir Ahmad & Muhammad Ahmed Shehzad, 2021. "Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1693-1708, June.
    19. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    20. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:3:p:356-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.