[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v38y2019i6p525-551.html
   My bibliography  Save this article

Predictive power of Markovian models: Evidence from US recession forecasting

Author

Listed:
  • Ruilin Tian
  • Gang Shen
Abstract
This paper provides extensions to the application of Markovian models in predicting US recessions. The proposed Markovian models, including the hidden Markov and Markov models, incorporate the temporal autocorrelation of binary recession indicators in a traditional but natural way. Considering interest rates and spreads, stock prices, monetary aggregates, and output as the candidate predictors, we examine the out‐of‐sample performance of the Markovian models in predicting the recessions 1–12 months ahead, through rolling window experiments as well as experiments based on the fixed full training set. Our study shows that the Markovian models are superior to the probit models in detecting a recession and capturing the recession duration. But sometimes the rolling window method may affect the models' prediction reliability as it could incorporate the economy's unsystematic adjustments and erratic shocks into the forecast. In addition, the interest rate spreads and output are the most efficient predictor variables in explaining business cycles.

Suggested Citation

  • Ruilin Tian & Gang Shen, 2019. "Predictive power of Markovian models: Evidence from US recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 525-551, September.
  • Handle: RePEc:wly:jforec:v:38:y:2019:i:6:p:525-551
    DOI: 10.1002/for.2579
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2579
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaizhang Feng & Jiandong Sun, 2020. "Misclassification-Errors-Adjusted Sahm Rule for Early Identification of Economic Recession," Working Papers 2020-029, Human Capital and Economic Opportunity Working Group.
    2. Blanchflower, David G. & Bryson, Alex, 2021. "The Economics of Walking About and Predicting Unemployment," GLO Discussion Paper Series 922, Global Labor Organization (GLO).
    3. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    4. Feng, Shuaizhang & Sun, Jiandong, 2020. "Misclassification-errors-adjusted Sahm Rule for Early Identification of Economic Recession," GLO Discussion Paper Series 523, Global Labor Organization (GLO).
    5. Feng, Shuaizhang & Sun, Jiandong, 2020. "Misclassification-Errors-Adjusted Sahm Rule for Early Identification of Economic Recession," IZA Discussion Papers 13168, Institute of Labor Economics (IZA).
    6. Khatereh Ghasvarian Jahromi & Davood Gharavian & Hamid Reza Mahdiani, 2023. "Wind power prediction based on wind speed forecast using hidden Markov model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 101-123, January.
    7. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    8. Seulki Chung, 2023. "Real-time Prediction of the Great Recession and the Covid-19 Recession," Papers 2310.08536, arXiv.org, revised May 2024.
    9. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    10. Blanchflower, David G. & Bryson, Alex, 2023. "Labour Market Expectations and Unemployment in Europe," IZA Discussion Papers 15905, Institute of Labor Economics (IZA).
    11. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:38:y:2019:i:6:p:525-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.