[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v41y2022i3p407-421.html
   My bibliography  Save this article

Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model

Author

Listed:
  • Qifa Xu
  • Lu Chen
  • Cuixia Jiang
  • Yezheng Liu
Abstract
Low‐frequency risk measures can filter out noise and better reflect the trend. In order to improve the forecasting accuracy of low‐frequency risk through making full use of the valuable information contained in high‐frequency independent variables, we propose a novel joint elicitable mixed data sampling (JE‐MIDAS) model by introducing MIDAS method into JE regression model. We utilize the JE‐MIDAS model to forecast value at risk and expected shortfall simultaneously and compare its performance with that of other popular models through both the Monte Carlo simulations and real‐world applications. The numerical results show that our model is superior to other models because it can model mixed‐frequency data directly, which avoids the information loss caused by frequency conversion. The empirical results on three stock indices also show that market volatility can increase financial risk. Interest rate has positive effects on risks for U.S. S&P500 and U.K. FTSE, whereas negative for SHCI of China.

Suggested Citation

  • Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
  • Handle: RePEc:wly:jforec:v:41:y:2022:i:3:p:407-421
    DOI: 10.1002/for.2817
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2817
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    2. Bhattacharyay, Biswa Nath, 2013. "Determinants of bond market development in Asia," Journal of Asian Economics, Elsevier, vol. 24(C), pages 124-137.
    3. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    4. Eric Ghysels & Alberto Plazzi & Rossen Valkanov, 2016. "Why Invest in Emerging Markets? The Role of Conditional Return Asymmetry," Journal of Finance, American Finance Association, vol. 71(5), pages 2145-2192, October.
    5. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    6. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    7. Christoffersen, Peter & Errunza, Vihang & Jacobs, Kris & Jin, Xisong, 2014. "Correlation dynamics and international diversification benefits," International Journal of Forecasting, Elsevier, vol. 30(3), pages 807-824.
    8. Hall, Robert E, 1988. "Intertemporal Substitution in Consumption," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 339-357, April.
    9. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    10. Helen Higgs & Andrew Worthington, 2004. "Transmission of returns and volatility in art markets: a multivariate GARCH analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 11(4), pages 217-222.
    11. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    12. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    13. Andrew Worthington & Helen Higgs, 2004. "Transmission of equity returns and volatility in Asian developed and emerging markets: a multivariate GARCH analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 9(1), pages 71-80.
    14. He, Dong & Wang, Honglin, 2012. "Dual-track interest rates and the conduct of monetary policy in China," China Economic Review, Elsevier, vol. 23(4), pages 928-947.
    15. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    16. Guo, Feng & Hu, Jinyan & Jiang, Mingming, 2013. "Monetary shocks and asymmetric effects in an emerging stock market: The case of China," Economic Modelling, Elsevier, vol. 32(C), pages 532-538.
    17. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yuan, Jing, 2018. "Measuring systemic risk of the banking industry in China: A DCC-MIDAS-t approach," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 13-31.
    18. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    19. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    20. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    21. Wen-Yi Chen, 2017. "Demographic structure and monetary policy effectiveness: evidence from Taiwan," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2521-2544, November.
    22. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    23. Chen, Hongyi & Chow, Kenneth & Tillmann, Peter, 2017. "The effectiveness of monetary policy in China: Evidence from a Qual VAR," China Economic Review, Elsevier, vol. 43(C), pages 216-231.
    24. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    25. Francesco P. Esposito & Mark Cummins, 2016. "Multiple Hypothesis Testing of Market Risk Forecasting Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 381-399, August.
    26. Liu, Li-gang & Zhang, Wenlang, 2010. "A New Keynesian model for analysing monetary policy in Mainland China," Journal of Asian Economics, Elsevier, vol. 21(6), pages 540-551, December.
    27. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    28. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    29. Hyun Hak Kim & Norman R. Swanson, 2018. "Methods for backcasting, nowcasting and forecasting using factor†MIDAS: With an application to Korean GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 281-302, April.
    30. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    31. Yuyan Tan & Yang Ji & Yiping Huang, 2016. "Completing China's Interest Rate Liberalization," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 24(2), pages 1-22, March.
    32. Xu, Qifa & Zhuo, Xingxuan & Jiang, Cuixia & Liu, Xi & Liu, Yezheng, 2018. "Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth," Economic Modelling, Elsevier, vol. 75(C), pages 221-236.
    33. Tarun K. Mukherjee & Atsuyuki Naka, 1995. "Dynamic Relations Between Macroeconomic Variables And The Japanese Stock Market: An Application Of A Vector Error Correction Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 18(2), pages 223-237, June.
    34. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    35. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    36. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    37. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    38. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    39. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    40. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    41. Mukherjee, Tarun K & Naka, Atsuyuki, 1995. "Dynamic Relations between Macroeconomic Variables and the Japanese Stock Market: An Application of a Vector Error Correction Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 18(2), pages 223-237, Summer.
    42. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    2. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    3. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    4. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    5. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    6. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    7. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    8. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    9. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    10. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    11. Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
    12. Federico Gatta & Fabrizio Lillo & Piero Mazzarisi, 2024. "CAESar: Conditional Autoregressive Expected Shortfall," Papers 2407.06619, arXiv.org.
    13. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    14. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    15. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    16. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    17. Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
    18. Sander Barendse & Erik Kole & Dick van Dijk, 2023. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.
    19. Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
    20. Vincenzo Candila & Giampiero M. Gallo & Lea Petrella, 2020. "Mixed--frequency quantile regressions to forecast Value--at--Risk and Expected Shortfall," Papers 2011.00552, arXiv.org, revised Mar 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:3:p:407-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.