[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v87y2019i3p699-739.html
   My bibliography  Save this article

A Distributional Framework for Matched Employer Employee Data

Author

Listed:
  • Stéphane Bonhomme
  • Thibaut Lamadon
  • Elena Manresa
Abstract
We propose a framework to identify and estimate earnings distributions and worker composition on matched panel data, allowing for two‐sided worker‐firm unobserved heterogeneity and complementarities in earnings. We introduce two models: a static model that allows for nonlinear interactions between workers and firms, and a dynamic model that allows, in addition, for Markovian earnings dynamics and endogenous mobility. We show that this framework nests a number of structural models of wages and worker mobility. We establish identification in short panels, and develop tractable two‐step estimators where firms are classified in a first step. Applying our method to Swedish administrative data, we find that log‐earnings are approximately additive in worker and firm heterogeneity. Our estimates imply the presence of strong sorting patterns between workers and firms, and a small contribution of firms—net of worker composition—to earnings dispersion. In addition, we document that wages have a direct effect on mobility, and that, beyond their dependence on the current firm, earnings after a job move also depend on the previous employer.

Suggested Citation

  • Stéphane Bonhomme & Thibaut Lamadon & Elena Manresa, 2019. "A Distributional Framework for Matched Employer Employee Data," Econometrica, Econometric Society, vol. 87(3), pages 699-739, May.
  • Handle: RePEc:wly:emetrp:v:87:y:2019:i:3:p:699-739
    DOI: 10.3982/ECTA15722
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA15722
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA15722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
    • J62 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Job, Occupational and Intergenerational Mobility; Promotion

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:87:y:2019:i:3:p:699-739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.