Exponential inequalities for nonstationary Markov chains
Author
Suggested Citation
DOI: 10.1515/demo-2019-0007
Download full text from publisher
References listed on IDEAS
- Steinwart, Ingo & Hush, Don & Scovel, Clint, 2009. "Learning from dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 175-194, January.
- Hang, H. & Steinwart, I., 2014. "Fast learning from α-mixing observations," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 184-199.
- Alquier Pierre & Li Xiaoyin & Wintenberger Olivier, 2014.
"Prediction of time series by statistical learning: general losses and fast rates,"
Dependence Modeling, De Gruyter, vol. 1(2013), pages 65-93, January.
- Alquier Pierre & Li Xiaoyin & Wintenberger Olivier, 2013. "Prediction of time series by statistical learning: general losses and fast rates," Dependence Modeling, De Gruyter, vol. 1(2013), pages 65-93, January.
- Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
- Dedecker, Jérôme & Fan, Xiequan, 2015. "Deviation inequalities for separately Lipschitz functionals of iterated random functions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 60-90.
- Doukhan, Paul & Neumann, Michael H., 2007. "Probability and moment inequalities for sums of weakly dependent random variables, with applications," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 878-903, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan, Xiequan & Alquier, Pierre & Doukhan, Paul, 2022. "Deviation inequalities for stochastic approximation by averaging," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 452-485.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
- Hafouta, Yeor, 2023. "Convergence rates in the functional CLT for α-mixing triangular arrays," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 242-290.
- Yayi Yan & Jiti Gao & Bin Peng, 2021. "On Time-Varying VAR Models: Estimation, Testing and Impulse Response Analysis," Papers 2111.00450, arXiv.org.
- Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013.
"A smooth transition long-memory model,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
- Marcel Aloy & Gilles Dufrénot & Charles Lai Tong & Anne Péguin-Feissolle, 2012. "A Smooth Transition Long-Memory Model," AMSE Working Papers 1240, Aix-Marseille School of Economics, France, revised Dec 2012.
- Marcel Aloy & Gilles Dufrénot & Charles Lai-Tong & Anne Peguin-Feissolle, 2013. "A smooth transition long-memory model," Post-Print hal-01498270, HAL.
- Marcel Aloy & Gilles Dufrenot & Charles Lai-Tong & Anne Peguin-Feissolle, 2012. "A Smooth Transition Long-Memory Model," Working Papers halshs-00793680, HAL.
- Baruník, Jozef & Ellington, Michael, 2024.
"Persistence in financial connectedness and systemic risk,"
European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
- Jozef Barunik & Michael Ellington, 2020. "Persistence in Financial Connectedness and Systemic Risk," Papers 2007.07842, arXiv.org, revised Nov 2023.
- Dew-Becker, Ian & Nathanson, Charles G., 2019.
"Directed attention and nonparametric learning,"
Journal of Economic Theory, Elsevier, vol. 181(C), pages 461-496.
- Ian Dew-Becker & Charles G. Nathanson, 2017. "Directed Attention and Nonparametric Learning," NBER Working Papers 23917, National Bureau of Economic Research, Inc.
- Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
- Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
- Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017.
"Quantile spectral analysis for locally stationary time series,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
- Stefan Skowronek & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2014. "Quantile Spectral Analysis for Locally Stationary Time Series," Working Papers ECARES ecares 2014-24, ULB -- Universite Libre de Bruxelles.
- Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2015. "Quantile Spectral Analysis for Locally Stationary Time Series," Working Papers ECARES ECARES 2015-27, ULB -- Universite Libre de Bruxelles.
- Arif Dowla & Efstathios Paparoditis & Dimitris Politis, 2013. "Local block bootstrap inference for trending time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 733-764, August.
- Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
- Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.
- Jiti Gao & Bin Peng & Wei Biao Wu & Yayi Yan, 2022. "Time-Varying Multivariate Causal Processes," Monash Econometrics and Business Statistics Working Papers 8/22, Monash University, Department of Econometrics and Business Statistics.
- Last, Michael & Shumway, Robert, 2008. "Detecting abrupt changes in a piecewise locally stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 191-214, February.
- Jozef Barunik & Michael Ellington, 2020. "Dynamic Network Risk," Papers 2006.04639, arXiv.org, revised Jul 2020.
- Matteo Barigozzi & Christian Brownlees, 2019.
"NETS: Network estimation for time series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
- Matteo Barigozzi & Christian Brownlees, 2013. "Nets: Network Estimation for Time Series," Working Papers 723, Barcelona School of Economics.
- Barigozzi, Matteo & Brownlees, Christian T., 2018. "Nets: network estimation for time series," LSE Research Online Documents on Economics 90493, London School of Economics and Political Science, LSE Library.
- Matteo Barigozzi & Christian T. Brownlees, 2013. "Nets: Network estimation for time series," Economics Working Papers 1391, Department of Economics and Business, Universitat Pompeu Fabra.
More about this item
Keywords
Nonstationary Markov chains; Martingales; Exponential inequalities; Time series forecasting; Statistical learning theory; Oracle inequalities; Model selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:150-168:n:7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.