[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/uwp/jhriss/v53y2018i4p1050-1099.html
   My bibliography  Save this article

Going beyond LATE: Bounding Average Treatment Effects of Job Corps Training

Author

Listed:
  • Xuan Chen
  • Carlos A. Flores
  • Alfonso Flores-Lagunes
Abstract
We derive bounds on the population average treatment effect (ATE) and the average treatment effect on the treated (ATT) with an instrumental variable and employ them to evaluate the effectiveness of the Job Corps (JC) training program using data from a randomized evaluation with noncompliance. We find positive effects of JC on earnings and employment, and negative effects on public benefits dependence for eligible applicants (ATE) and participants (ATT). Some of our results also point to positive average effects on the labor market outcomes of “never-takers” (individuals who never enroll in JC regardless of their treatment assignment).

Suggested Citation

  • Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2018. "Going beyond LATE: Bounding Average Treatment Effects of Job Corps Training," Journal of Human Resources, University of Wisconsin Press, vol. 53(4), pages 1050-1099.
  • Handle: RePEc:uwp:jhriss:v:53:y:2018:i:4:p:1050-1099
    Note: DOI: 10.3368/jhr.53.4.1015-7483R1
    as

    Download full text from publisher

    File URL: http://jhr.uwpress.org/cgi/reprint/53/4/1050
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    2. Xintong Wang & Alfonso Flores-Lagunes, 2022. "Conscription and Military Service: Do They Result in Future Violent and Nonviolent Incarcerations and Recidivism?," Journal of Human Resources, University of Wisconsin Press, vol. 57(5), pages 1715-1757.
    3. German Blanco & Xuan Chen & Carlos A. Flores & Alfonso Flores-Lagunes, 2020. "Bounds on Average and Quantile Treatment Effects on Duration Outcomes Under Censoring, Selection, and Noncompliance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 901-920, October.
    4. Xintong Wang & Carlos A. Flores & Alfonso Flores-Lagunes, 2020. "The Effects of Vietnam-Era Military Service on the Long-Term Health of Veterans: A Bounds Analysis," Center for Policy Research Working Papers 234, Center for Policy Research, Maxwell School, Syracuse University.
    5. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    6. Lixiong Li & Désiré Kédagni & Ismaël Mourifié, 2024. "Discordant relaxations of misspecified models," Quantitative Economics, Econometric Society, vol. 15(2), pages 331-379, May.
    7. Blazar, David & Gao, Wenjing & Gershenson, Seth & Goings, Ramon & Lagos, Francisco, 2024. "Do Grow-Your-Own Programs Work? Evidence from the Teacher Academy of Maryland," IZA Discussion Papers 16983, Institute of Labor Economics (IZA).
    8. Das, Tirthatanmoy & Polachek, Solomon, 2019. "A New Strategy to Identify Causal Relationships: Estimating a Binding Average Treatment Effect," IZA Discussion Papers 12766, Institute of Labor Economics (IZA).
    9. Christelis, Dimitris & Messina, Julián, 2019. "Partial Identification of Population Average and Quantile Treatment Effects in Observational Data under Sample Selection," IDB Publications (Working Papers) 9520, Inter-American Development Bank.
    10. Michela Bia & German Blanco & Marie Valentova, 2021. "The Causal Impact of Taking Parental Leave on Wages: Evidence from 2005 to 2015," LISER Working Paper Series 2021-08, Luxembourg Institute of Socio-Economic Research (LISER).

    More about this item

    JEL classification:

    • J30 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:jhriss:v:53:y:2018:i:4:p:1050-1099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://jhr.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.